Supporting Information

Rational design of porous binary Pt-based nanodendrites as efficient catalysts for glucose oxidation reaction over a wide pH range

Kamel Eida†, Yahia H. Ahmada†, Siham Y. AlQaradawia and Nageh K. Allamb, *

aDepartment of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
bEnergy Materials Lab (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
*Corresponding author E-mail: nageh.allam@aucegypt.edu
†K. Eid and Y. H. Ahmad contributed equally to the work.

Figure S1. (a) CVs measured in N\textsubscript{2}-saturated 0.1 M NaOH at a scan rate of 50 mV s-1, and (b) Tafel plots of the as-prepared catalysts.
Figure S2. CVs measured in N$_2$-saturated 0.1 M HClO$_4$ at a scan rate of 50 mV s$^{-1}$.

Figure S3. CVs measured in N$_2$-saturated 0.1 M PBS (pH 7.4) at a scan rate of 50 mV s$^{-1}$.
Figure S4. Lattice strain of the as-synthesized porous binary nanodendrites