Supplementary material

Effects of CO\textsubscript{2} to deactivation behaviors of Co/Al\textsubscript{2}O\textsubscript{3} and Co/SiO\textsubscript{2} for CO hydrogenation to hydrocarbons

Kyung Soo Park, K. Saravanan, Seon-Ju Park, Yun-Jo Lee, Ki-Won Jeon, Jong Wook Bae*

Figure S1. Pore size distribution of the fresh Co/γ-Al\textsubscript{2}O\textsubscript{3} and Co/SiO\textsubscript{2} catalysts

Figure S2. PXRD patterns of the fresh Co/γ-Al\textsubscript{2}O\textsubscript{3} [from ref. 8] and Co/SiO\textsubscript{2} catalysts

Figure S3. H\textsubscript{2}-TPR profiles of the fresh Co/γ-Al\textsubscript{2}O\textsubscript{3} and Co/SiO\textsubscript{2} catalysts at a heating rate of 5 °C/min from 100 to 1100 °C

Figure S4. XPS analysis of (A) Al 2p of the Co/γ-Al\textsubscript{2}O\textsubscript{3} and (B) Si 2p of the Co/SiO\textsubscript{2} on the fresh (only reduction), used catalysts after FTS reaction without CO\textsubscript{2} addition and used catalysts after FTS reaction with 20%CO\textsubscript{2} addition

Figure S5. Schemes of FT-IR analyses for the successive adsorption of CO → CO\textsubscript{2} → CO on the reduced CoAl and CoSi after H\textsubscript{2} purge at each step to verify the oxidation-reduction properties of the supported cobalt nanoparticles

Figure S6. FT-IR analysis of adsorbed CO molecules on the (A) Co/γ-Al\textsubscript{2}O\textsubscript{3} catalyst and (B) Co/SiO\textsubscript{2} catalyst for the fresh catalyst, used catalyst without CO\textsubscript{2} addition and used catalyst with CO\textsubscript{2} addition

Figure S7. CO conversion and product distribution with time one stream on the (A) Co/γ-Al\textsubscript{2}O\textsubscript{3} without CO\textsubscript{2} addition, (B) Co/γ-Al\textsubscript{2}O\textsubscript{3} with 20vol%CO\textsubscript{2} addition, (C) Co/SiO\textsubscript{2} without CO\textsubscript{2} addition and (D) Co/SiO\textsubscript{2} with 20vol%CO\textsubscript{2} addition
Figure S8. Cobalt particle size distributions from the TEM images of (A) Co/γ-Al₂O₃, (B) Co/SiO₂: (1) reduced catalyst, (2) used catalyst without CO₂ addition and (3) used catalyst with CO₂ addition
Figure S1. Pore size distribution of the fresh Co/\(\gamma\)-Al\(_2\)O\(_3\) and Co/SiO\(_2\) catalysts
Figure S2. PXRD patterns of the fresh Co/γ-Al₂O₃ [from ref. 8] and Co/SiO₂ catalysts
Figure S3. H$_2$-TPR profiles of the fresh Co/γ-Al$_2$O$_3$ and Co/SiO$_2$ catalysts at a heating rate of 5 °C/min from 100 to 1100 °C
Figure S4. XPS analysis of (A) Al 2p of the Co/γ-Al₂O₃ and (B) Si 2p of the Co/SiO₂ on the fresh (only reduction), used catalysts after FTS reaction without CO₂ addition and used catalysts after FTS reaction with 20%CO₂ addition.
Figure S5. Schemes of FT-IR analyses for the successive adsorption of CO \rightarrow CO$_2$ \rightarrow CO on the reduced CoAl and CoSi after H$_2$ purge at each step to verify the oxidation-reduction properties of the supported cobalt nanoparticles.
Figure S6. FT-IR analysis of adsorbed CO molecules on the (A) Co/γ-\(\text{Al}_2\text{O}_3 \) catalyst and (B) Co/SiO\(_2\) catalyst for the fresh catalyst, used catalyst without CO\(_2\) addition and used catalyst with CO\(_2\) addition.
Figure S7. CO conversion and product distribution with time one stream on the (A) Co/γ-Al$_2$O$_3$ without CO$_2$ addition, (B) Co/γ-Al$_2$O$_3$ with 20vol%CO$_2$ addition, (C) Co/SiO$_2$ without CO$_2$ addition and (D) Co/SiO$_2$ with 20vol%CO$_2$ addition
Figure S7. CO conversion and product distribution with time one stream on the (A) Co/γ-Al₂O₃ without CO₂ addition, (B) Co/γ-Al₂O₃ with 20vol%CO₂ addition, (C) Co/SiO₂ without CO₂ addition and (D) Co/SiO₂ with 20vol%CO₂ addition (continued)
Figure S8. Cobalt particle size distributions from the TEM images of (A) Co/γ-Al₂O₃, (B) Co/SiO₂: (1) reduced catalyst, (2) used catalyst without CO₂ addition and (3) used catalyst with CO₂ addition