Supporting Information

Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO

Partha Pratim Bag a,b,#, Xu-Sheng Wang a,#, Pathik Sahoo b, Jinhua Xiong c and Rong Cao a,*

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, P. R. China. E-mail: parthap.bag82@yahoo.com, (PPB), rcao@fjirsm.ac.cn; Fax: +86-591-83796710; Tel: +86-591-83725186.

bMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

cState Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China.

P. P. Bag and X. –S. Wang contributed equally to this work.

Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene 1,3,6,8-tetrakis(pbenzoic acid) pyrene (TBAPy).

Scheme S1. Synthetic procedure of TBAPy.

The synthesis was performed according to the previous literature.15 (The ref. belongs to main draft)
Figure S1. The XRD pattern of NU-1000.

Figure S2. The thermogravimetric graph of NU-1000 under nitrogen atmosphere.
Figure S3. The PXRD of CdS contained composites.

Figure S4. The Raman spectra of GO and RGO.
Figure S5. The hydrogen production activity of (a) CdS@NU-1000/1%RGO; (b) CdS@NU100/1.5%RGO; (c) CdS@NU-1000/0.5%RGO; (d) CdS@NU-1000; (e) NU-1000; (f) RGO; (g) CdS@NU-1000/1%RGO in the dark.

Figure S6. The PXRD patterns of (a) fresh CdS@NU-1000/1%RGO and (b) CdS@NU-1000/1%RGO after water splitting reaction without the addition of sacrificial agents.
Figure S7 The N$_2$ adsorption/desorption isotherms.

Figure S8 Pore width of NU-1000.
Figure S9. The TEM and HRTEM image of (a) H-CdS@NU-1000/1%RGO and (b) L-CdS@NU-1000/1%RGO.

Figure S10. PXRD pattern of all three composite materials.
Figure S11. (a) The SEM graph of CdS@NU-1000 and (b) The SEM graph of CdS@NU-1000/1%RGO.

Figure S12. The diffraction reflectance spectra: (a) NU-1000; (b) CdS@NU-1000/0.5%RGO; (c) CdS@NU-1000; (d) CdS@NU-1000/1%RGO; (e) CdS@NU-1000/1.5%RGO.

Table S1 The weight ratio of CdS and NU-1000 and their activity

<table>
<thead>
<tr>
<th>Samples</th>
<th>CdS:NU-1000 (wt/wt)</th>
<th>Activity (µmol h⁻¹)</th>
<th>CdS wt%</th>
<th>Activity (mmol g⁻¹ h⁻¹) / Times of activity over CdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-CdS@NU-1000/1%RGO</td>
<td>1 : 12.5</td>
<td>5.9</td>
<td>7.39</td>
<td>1.60/8.0</td>
</tr>
<tr>
<td>CdS@NU-1000/1%RGO</td>
<td>1 : 9.1</td>
<td>12</td>
<td>9.93</td>
<td>2.42/12.1</td>
</tr>
<tr>
<td>H-CdS@NU-1000/1%RGO</td>
<td>1 : 4.8</td>
<td>8.55</td>
<td>17.36</td>
<td>0.99/4.95</td>
</tr>
</tbody>
</table>
Quantum efficiency calculations.

In the following we describe the QE determination at $\lambda_0=420$ nm for CdS@NU-1000/1% RGO. The catalyst solution was irradiated by a 300W Xe lamp applying a $\lambda\pm7.5$ nm band-pass filter for 4 hours. The average intensity of irradiation was determined to be 163.7 mW·cm$^{-2}$ by a light intensity meter, and the irradiation area was 18.09 cm2. The number of incident photons (N) is 2.25×10^{22} as calculated by equation (1). The amount of H_2 molecules generated per hour was 2.56 µmol. The quantum efficiency is calculated from equation (2).

$$N = \frac{E\lambda}{hc} \quad (1)$$

$$QE = 2 \times \frac{\text{the number of evolved } H_2 \text{ molecules}}{\text{the number of incident photons}} \times 100 \% \quad (2)$$

Table. S2

<table>
<thead>
<tr>
<th>CdS@NU-1000/1% RGO</th>
<th>Activity (µmol/h)</th>
<th>QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>420 nm</td>
<td>2.56</td>
<td>0.0137%</td>
</tr>
<tr>
<td>450 nm</td>
<td>2.24</td>
<td>0.0114%</td>
</tr>
<tr>
<td>475 nm</td>
<td>1.63</td>
<td>0.0073%</td>
</tr>
</tbody>
</table>

Table. S3 The mass fraction of CdS in the composite

<table>
<thead>
<tr>
<th>Samples</th>
<th>Cd wt% (ICP)</th>
<th>S wt% (Elemental Analysis)</th>
<th>CdS wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdS@NU-1000</td>
<td>5.72</td>
<td>4.46</td>
<td>10.18</td>
</tr>
<tr>
<td>CdS@NU-1000/1% RGO</td>
<td>5.67</td>
<td>4.26</td>
<td>9.93</td>
</tr>
<tr>
<td>L-CdS@NU-1000/1% RGO</td>
<td>4.14</td>
<td>3.25</td>
<td>7.39</td>
</tr>
<tr>
<td>M-CdS@NU-1000/1% RGO</td>
<td>11.77</td>
<td>5.59</td>
<td>17.36</td>
</tr>
</tbody>
</table>