Formation of C-C, C-S and C-N bonds catalysed by supported copper nanoparticles

Alexander Yu. Mitrofanov,a Arina V. Murashkina,a Iris Martín-García,b Francisco Alonsob,∗ and Irina P. Beletskayaa,∗

a Department of Chemistry, Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; E-mail: beletska@org.chem.msu.ru
b Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain; E-mail: falonso@ua.es

Supplementary Information

General .. S2
Figure S1. Characterisation of CuNPs/C .. S3
Figure S2. Characterisation of CuNPs/ZY ... S4
Figure S3. Characterisation of CuNPs/TiO2 .. S5
Figure S4. Characterisation of CuNPs/MK-10 ... S6
Figure S5. Adsorption isotherms of the catalysts ... S7
Figure S6. TEM micrographs of the reused catalysts .. S8
Cross coupling of 1a and 2a catalysed by CuNPs on different supports S9
General procedure for the cross coupling of aryl iodides (1) with arylacetylenes (2) catalysed by CuNPs/ZY .. S9
Cross coupling of 1a and 2a catalysed by commercial copper catalysts S9
Cross coupling of 1c and 4a catalysed by CuNPs on different supports S10
General procedure for the cross coupling of aryl halides (1) with thiophenol (4a) catalysed by CuNPs/ZY .. S10
General procedure for the cross coupling of 4-iodobenzonitrile (1c) with thiols (4) catalysed by CuNPs/ZY .. S10
Characterisation of compounds 5 .. S11–S12
Cross coupling of 1c and 4a catalysed by commercial copper catalysts S12
General procedure for the cross coupling of 4-iodobenzonitrile (1c) with azoles 6 S13
Cross coupling of 1c and 6a catalysed by commercial copper catalysts S13
Figure S7. XPS spectrum of reused CuNPs/TiO2 ... S14
Figure S8. XPS spectrum of CuNPs/TiO2 impregnated with 4-iodobenzonitrile (1c) S14
References .. S15
NMR spectra of the new compounds 5 ... S16–S20

S1
General

Copper(II) chloride (97%, Aldrich), lithium powder (MEDALCHEMY S.L.), 4,4′-di-tert-butylbiphenyl (DTBB, Sigma-Aldrich), sodium Y zeolite (Sigma-Aldrich), activated charcoal (Norit CA1, Sigma-Aldrich), TiO₂ (anatasa nanopowder, Alfa Aesar) and montmorillonite K-10 (Sigma-Aldrich), all aryl halides, alkynes, thiols and heteroaromatic starting materials were commercially available of the best grade (Aldrich, Acros, Alfa Aesar, Fluorochem) and were used without further purification. Infrared analysis was performed with a FT-IR-4100 (ATR) spectrophotometer; wavenumbers are given in cm⁻¹. NMR spectra were recorded on Bruker Avance 300 and 400 spectrometers (300 and 400 MHz for ¹H NMR; 75 and 101 MHz for ¹³C NMR); chemical shifts are given in (δ) parts per million and coupling constants (J) in Hertz. The ¹H NMR yields were determined from the reaction crudes using mesitylene as the internal standard. Mass spectra (EI) were obtained at 70 eV on an Agilent 5973 spectrometer; fragment ions in m/z with relative intensities (%) in parentheses. HRMS analyses were carried out on Finnigan MAT95S and Agilent 7200 (Q-TOF) spectrometers. The purity of volatile compounds and the chromatographic analyses (GLC) were determined with a Youling 6100 instrument equipped with a flame ionization detector and a 30 m capillary column (0.25 mm diameter, 0.25 μm film thickness), using nitrogen (1 mL/min) as the carrier gas, Tinjector = 270 °C, Tcolumn = 60 °C (3 min) and 60–270 °C (15 °C/min); retention times (tᵣ) are given in min. Thin layer chromatography was carried out on TLC plastic sheets with silica gel 60 F₂₅₄ (Merck). Column and preparative chromatography was performed using silica gel 60 of 40–60 microns and P/UV254, respectively (hexane/EtOAc as eluent).
Characterisation of CuNPs/C

Figure S1. TEM micrograph, XPS spectrum at the Cu $2p_{3/2}$ level, EDX spectrum and selected area electron diffraction (SAED) pattern of CuNPs/C. Reproduced from Ref. 1 with permission from the Royal Society of Chemistry.
Figure S2. TEM micrographs, EDX spectrum and XPS spectrum at the Cu $2p_{3/2}$ level of CuNPs/ZY. Reproduced from Ref. 2 with permission. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
Characterisation of CuNPs/TiO$_2$

Figure S3. TEM micrograph, EDX spectrum and XPS spectrum at the Cu 2$p_{3/2}$ level of CuNPs/TiO$_2$.

S5
Characterisation of CuNPs/MK-10

Figure S4. TEM micrograph, EDX spectrum and XPS spectrum at the Cu 2p3/2 level of CuNPs/MK-10.
Figure S5. Adsorption isotherms of the catalysts.
Figure S6. TEM micrographs of (a) CuNPs/ZY after the fourth cycle in the Sonogashira reaction, (b) CuNPs/ZY after the fourth cycle in the thiol arylation reaction and (c) CuNPs/TiO$_2$ after the second cycle in the azole arylation reaction.
Cross coupling of 1a and 2a catalysed by CuNPs on different supports

4-Iodoanisole (1a, 58.5 mg, 0.25 mmol), phenylacetylene (2a, 41.2 µL, 0.375 mmol, 1.5 equiv.), the catalyst (5 mol% Cu), K2CO3 (69 mg, 0.5 mmol, 2 equiv.), and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 120 ºC under Ar and stirred for 4 or 8 h (Figure 1). The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO4. The resulting organic phase was subjected to solvent evaporation under vacuum and to 1H NMR analysis (mesitylene as the internal standard).

General procedure for the cross coupling of aryl iodides with arylacetylenes catalysed by CuNPs/ZY (Table 1). The aryl halide (1, 0.25 mmol), arylacetylene (2, 0.375 mmol, 1.5 equiv.), CuNPs/ZY (26.7 mg, ca. 4 mol%), K2CO3 (69 mg, 0.5 mmol, 2 equiv.) and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 120 ºC under Ar and stirred for the specified time in Table 1. The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO4. The resulting organic phase was subjected to solvent evaporation under vacuum and to 1H NMR analysis (mesitylene as the internal standard) for products 3aa-3ka or to purification by column chromatography (silica gel, hexane/EtOAc) for products 3cb-3cd.

All compounds 3 were characterised by comparison of their physical and spectroscopic data with those described in the literature: 3aa,3 3ba,4 3ca,5 3da,6 3ea,7 3fa,8 3ga,6 3ha,9 3ka,6 3cb,10 3cc11 and 3cd.12

Cross coupling of 1a and 2a catalysed by commercial copper catalysts

4-Iodoanisole (1a, 58.5 mg, 0.25 mmol), phenylacetylene (2a, 41.2 µL, 0.375 mmol, 1.5 equiv.), the catalyst (5 mol%), K2CO3 (69 mg, 0.5 mmol, 2 equiv.), and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 120 ºC under Ar and stirred for 8 h. The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO4. The resulting organic phase was subjected to solvent evaporation under vacuum and to GLC analysis.
Cross coupling of 1c and 4a catalysed by CuNPs on different supports

4-Iodobenzonitrile (1c, 57 mg, 0.25 mmol), thiophenol (4a, 38 μL, 0.375 mmol, 1.5 equiv.), the catalyst (1 mol% Cu), K₂CO₃ (69 mg, 0.5 mmol, 2 equiv.) and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 80 °C under Ar and stirred for 2 or 4 h (Figure 3). The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO₄. The resulting organic phase was subjected to solvent evaporation under vacuum and ¹H NMR analysis (mesitylene as the internal standard).

General procedure for the cross coupling of aryl halides (1) with thiophenol (4a) catalysed by CuNPs/ZY (Table 3).

The aryl halide (1, 0.25 mmol), thiophenol (4a, 38 μL, 0.375 mmol, 1.5 equiv.), CuNPs/ZY (5.3 mg, 0.7 mol%), K₂CO₃ (69 mg, 0.5 mmol, 2 equiv.) and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 120 °C under Ar and stirred for the specified time in Table 3. The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO₄. The resulting organic phase was subjected to solvent evaporation under vacuum and ¹H NMR analysis (mesitylene as the internal standard).

Compounds 5aa-5ra were characterised by comparison of their physical and spectroscopic data with those described in the literature: 5aa,¹³ 5ba,¹⁴ 5ca,¹⁵ 5fa,¹⁵ 5ga,¹⁶ 5oa,¹⁷ 5pa,¹⁵ 5qa¹⁴ and 5ra.¹⁴

General procedure for the cross coupling of 4-iodobenzonitrile (1c) with thiols (4) catalysed by CuNPs/ZY (Table 4).

4-Iodobenzonitrile (1c, 114.5 mg, 0.5 mmol), the thiol (4, 0.75 mmol, 1.5 equiv.), CuNPs/ZY (10.6 mg, 0.7 mol%), K₂CO₃ (138 mg, 1.0 mmol) or KOH (56 mg, 1.0 mmol) and DMF (2 mL) were added to a reactor tube. The mixture was warmed to 70 or 100 °C under Ar and stirred for 4 h. The reaction crude was diluted with EtOAc (6 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 6 mL) to remove the DMF and washing with brine (8 mL). The resulting organic phase was subjected to solvent evaporation under vacuum and purification by column chromatography (silica gel, hexane/EtOAc).
Compounds 5cb, 5cg, 5ch, 5ci and 5cj were characterised by comparison of their physical and spectroscopic data with those described in the literature. Data for the new compounds 5 follows:

4-[(3,4-Dichlorophenyl)thio]benzonitrile (5cc): Yellow solid; 63 g (45% yield); m.p. 108.6–109.0 ºC; t_r 16.99 min; R_f 0.83 (hexane/EtOAc, 1:1). IR (neat) ν = 3035, 2925, 2225, 869, 629, 615 cm^{−1}. 1H NMR (400 MHz, CDCl₃) δ = 7.24, 7.54 (AA’XX’ system, J = 8.6 Hz, 4H), 7.30 (dd, J = 8.2, 2.1 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H). 13C NMR (101 MHz, CDCl₃) δ = 109.9, 118.4, 128.4, 131.6, 131.7, 132.6, 132.7, 133.7, 133.8, 135.0, 143.4. GC-MS (EI): m/z (%) = 283 (15) [M+4], 282 (11) [M+3], 281 (71) [M+2], 280 (18) [M+1], 279 (100) [M⁺], 243 (18), 210 (11), 209 (68), 208 (13), 142 (11). HRMS (EI): m/z calcd. for C₁₃H₇Cl₂N₂ 278.9676, found 278.9671.

4-[(3,5-Bis(trifluoromethyl)phenyl)thio]benzonitrile (5cd): Yellow oil; 141 mg (81% yield); t_r 13.09 min; R_f 0.54 (hexane/EtOAc, 9:1). IR (neat) ν = 3104, 3030, 2230, 1592, 1486, 1350, 1130, 822, 681 cm^{−1}. 1H NMR (300 MHz, CD₃OD) δ = 7.49, 7.74 (AA’XX’ system, J = 8.3 Hz, 4H), 7.73–7.97 (m, 3H). 13C NMR (75 MHz, CD₃OD) δ = 111.1, 117.7, 118.8, 121.5, 122.9 (q, J_{CF} = 272.3 Hz), 130.5, 131.6 (q, J_{CF} = 2.9 Hz), 132.6 (q, J_{CF} = 33.6 Hz), 132.9, 137.5, 140.8. GC-MS (EI) m/z (%) = 348 (16) [M⁺], 347 (100) [M⁺], 328 (11), 326 (13), 258 (22). HRMS (EI): m/z calcd. for C₁₅H₇F₆NS 347.0203, found 347.0205.

4-[(1-Methyl-1H-imidazol-2-yl)thio]benzonitrile (5ce): Yellow solid; 56 mg (52% yield); m.p. 104.0–104.6 ºC; t_r 15.49 min; R_f 0.25 (hexane/EtOAc, 1:1). IR (neat) ν = 3045, 3194, 2761, 2223, 658, 618 cm^{−1}. 1H NMR (300 MHz, CDCl₃) δ = 3.68 (s, 3H), 7.11, 7.51 (AA’XX’ system, J = 8.5 Hz, 4H), 7.17 (s, 1H), 7.27 (s, 1H). 13C NMR (75 MHz, CDCl₃) δ = 33.9, 109.7, 118.4, 124.6,
126.8, 127.6, 130.9, 132.7, 142.7 ppm. GC-MS (EI) m/z (%) = 216 (13) [M^+1], 215 (63) [M^+], 214 (100), 208 (10), 207 (34), 182 (12), 116 (11), 72 (10). HRMS (EI): m/z calcd. for C_{11}H_{9}N_{3}S 215.0517, found 215.0501.

4-(Benzo[d]thiazol-2-ylthio)benzonitrile (5cf): Yellow solid; 85 mg (63% yield); m.p. 91.3–91.8 °C; t_r 18.13 min; R_f 0.82 (hexane/EtOAc, 1:1). IR (neat) ν = 3070, 2917, 2850, 2225, 1455, 1423, 1006, 829, 758, 727 cm⁻¹. \(^1\)H NMR (300 MHz, CDCl₃): δ = 7.34–7.39 (m, 1H), 7.44–7.49 (m, 1H), 7.67–7.78 (m, 5H), 7.94–7.96 (d, \(J = 8.2\) Hz, 1H). \(^{13}\)C NMR (75 MHz, CDCl₃) δ = 112.9, 118.0, 121.1, 122.7, 125.4, 126.6, 133.0, 133.1, 136.0, 137.6, 153.4, 163.6. GC-MS (EI): m/z (%) = 269 (21) [M^+1], 268 (67) [M^+], 267 (100), 208 (12), 207 (35). HRMS (EI): m/z calcd. for C_{14}H_{8}N_{2}S 268.0129, found 268.0153.

4-(tert-Butylthio)benzamide (5si): Yellow solid; 63 mg (60% yield); m.p. 138.9–139.1 °C; t_r 14.49 min; R_f 0.25 (hexane/EtOAc, 1:1). IR (neat) ν = 3398, 3199, 2922, 2854, 1645, 1612, 1456, 1400, 1361, 1300, 1149, 1086, 848, 781 cm⁻¹. \(^1\)H NMR (300 MHz, DMSO) δ = 1.20 (s, 9H), 7.38 (s, 1H), 7.50, 7.80 (AA’XX’ system, \(J = 8.3\) Hz, 4H), 7.98 (s, 1H). \(^{13}\)C NMR [75 MHz, (CD₃)₂SO] δ = 30.2, 45.7, 127.3, 134.0, 135.3, 135.8, 166.9. GC-MS (EI) m/z (%) = 209 (15) [M^+], 153 (100), 137 (41), 136 (15), 57 (41). HRMS (EI) m/z: calcd. for C_{11}H_{15}NOS 209.0874, found 209.0870.

Cross coupling of 1c and 4a catalysed by commercial copper catalysts

4-Iodobenzonitrile (1c, 57 mg, 0.25 mmol), thiophenol (4a, 38 μL, 0.375 mmol, 1.5 equiv.), the catalyst (1 mol%), K_{2}CO₃ (69 mg, 0.5 mmol, 2 equiv.) and DMF (1 mL) were added to a reactor tube. The mixture was warmed to 100 °C under Ar and stirred for 4 h (Table 5). The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 x 3 mL) to remove the
DMF, washing with brine (4 mL) and drying with anhydrous MgSO₄. The resulting organic phase was subjected to solvent evaporation under vacuum and to GLC analysis.

General procedure for the cross coupling of 4-iodobenzonitrile (1c) with azoles (6)
4-Iodobenzonitrile (1c, 57.3 mg, 0.25 mmol), the corresponding azole (6, 0.3 mmol, 1.2 equiv.), CuNPs catalyst (5 mol% Cu), K₂CO₃ (69 mg, 0.5 mmol, 2 equiv.) and DMF (1 ml) were added to a reactor tube. The mixture was warmed to 120 ºC under Ar and stirred for 16 h. The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO₄. The resulting organic phase was subjected to solvent evaporation under vacuum and ¹H NMR analysis (mesitylene as the internal standard). All compounds 7 were characterised by comparison of their physical and spectroscopic data with those described in the literature: 7ca,²³ 7cb,²³ 7cc,²⁴ and 7cd.²⁵

Cross coupling of 1c and 6a catalysed by commercial copper catalysts
4-Iodobenzonitrile (1c, 57.3 mg, 0.25 mmol), imidazole (6a, 17 µL, 0.3 mmol, 1.2 equiv.), the catalyst (1.6 mol%), Cs₂CO₃ (163 mg, 0.5 mmol) and DMF (1 ml) were added to a reactor tube. The mixture was warmed to 120 ºC under Ar and stirred for 16 h. The reaction crude was diluted with EtOAc (3 mL) and filtered through a pad with Celite, followed by extraction of the filtrate with water (3 × 3 mL) to remove the DMF, washing with brine (4 mL) and drying with anhydrous MgSO₄. The resulting organic phase was subjected to solvent evaporation under vacuum and GLC analysis.
Figure S7. XPS spectrum at the Cu 2p$_{3/2}$ level of reused CuNPs/TiO$_2$.

Figure S8. XPS spectrum at the N 1s level of fresh CuNPs/TiO$_2$ impregnated with 4-iodobenzonitrile (1c).
References
NMR spectra of new compounds 5
(In CD$_3$OD*)

\[\text{S17}\]
[In (CD₃)₂SO*]