Supporting Information
[Electronic Supplementary Information to accompany]

Highly Active, Separable and Recyclable Bipyridine Iridium Catalysts for C-H Borylation Reactions

Hind Mamlouk,1 Jakkrit Suriboot,2 Praveen Kumar Manyam,1 Ahmed AL Yazidi,1 David Bergbreiter2,* and Sherzod T. Madrahimov1,*

1Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
2Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA

* bergbreiter@chem.tamu.edu; * sherzod.madrahimov@qatar.tamu.edu.

Table of Contents
S1. General information
S2. General procedures for direct C-H borylation of arenes
S3. Catalyst recycling and ICP-OES analysis of Iridium PIB1000-bpy –catalyst
S4. References

S1. General information

All reactions involving air and moisture sensitive conditions were carried out in a glovebox under argon atmosphere. Heptane was dried on activated 4Å molecular sieves before use. Arenes, pinacolatodiboron and all iridium precursors were purchased from Sigma-Aldrich and used without further purification. PIB1000-bpy ligand was prepared according to a previously reported procedure (S1). The 1H NMR spectrum of PIB1000-bpy is shown below in Figure 1. All glassware was oven-dried before use.

1H and 13C NMR spectra were recorded on a Bruker Avance 400 and 600 (400 MHz for 1H, 101 MHz for 13C and 600 MHz for 1H and 151 MHz for 13C) spectrometer and referenced to the residual solvent peak. 1H NMR data are reported as follows: chemical shift (multiplicity (bs = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet and m = multiplet), coupling constant and integration). 1H and 13C chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale) using the residual solvent resonances as internal standards.

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was conducted on a Thermo ICPi 6500 that is equipped to cover the spectral range from 175 to 785 nm. Samples (5 mg) were digested by heating at 150°C in 1mL of conc. HNO3 in a microwave reactor for 20 min, followed by addition of 1 mL of conc. H2SO4 and further heating at 150°C in a microwave reactor for 20 min whereupon the solution became clear. The clear solution was diluted to 10 mL with distilled water in a 10 mL volumetric flask and the iridium content of this solution was measured at emission wavelengths of 205.2, 212.6, and 224.2 nm. The iridium content was then estimated based on the calibration curve with an R2 value of 0.999 obtained from standardized solutions containing 5, 10, 15, 20, 25, 30, 35, 40, and 50 ppm of Ir (prepared from commercially available ICP standard solutions). The same procedure was applied to the borylated products obtained after each of the first three cycles.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017
S2. General procedure for direct C-H borylation of arenes

In a glovebox, a 20 mL vial containing [Ir(OMe)(COD)]$_2$ (10.0 mg, 0.015 mmol) or [IrCl(COE)$_2$]$_2$ (13.4 mg, 0.015 mmol) or [IrCl(COD)]$_2$ (10.1 mg, 0.015 mmol), PIB$_{1000}$-bpy (51.0 mg, 0.03 mmol), Pinacolatodiboron, pin$_2$B$_2$, (280.0 mg, 1.1 mmol) was charged with dry heptane (3 mL) and arenes (2 mmol). The reaction mixture was then allowed to magnetically stir at 25 °C or at 80°C for 18h. After the completion of 18h, the reaction mixture was concentrated under reduced pressure and 2 mL of acetonitrile was added which resulted in precipitation of the PIB-bound catalyst forming a biphasic mixture. This biphasic mixture was centrifuged (Speed: 10000 rpm/min) for 15 min which leads to complete separation of the nonpolar catalyst from the product containing acetonitrile phase. The product containing acetonitrile phase was collected and this biphasic separation procedure was repeated 3 more times to ensure complete separation of the product from the catalyst. The product was collected after removing the acetonitrile under reduced pressure.

Borylation reaction of benzene

In a glovebox, a 20 mL vial containing [Ir(OMe)(COD)]$_2$ (10.0 mg, 0.015 mmol), PIB$_{1000}$-BPY (51.0 mg, 0.03 mmol), and Pinacolatodiboron, pin$_2$B$_2$, (280.0 mg, 1.1 mmol) was charged with benzene (5 ml, 30 mmol). The reaction mixture was then allowed to magnetically stir at 80°C for 18h. After the completion of 18h, the reaction mixture was concentrated under reduced pressure and 2 mL of acetonitrile was added which resulted in precipitation of the PIB-bound catalyst forming a biphasic mixture. This biphasic mixture was centrifuged (Speed: 10000 rpm/min) for 15 min which leads to complete separation of the nonpolar catalyst from the product containing acetonitrile phase. The product containing acetonitrile phase was collected and this biphasic separation procedure was repeated 3 more times to ensure complete separation of the product from the catalyst. The product was collected after removing the acetonitrile under reduced pressure.
1,2-Dichloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (1).
Transparent oil. Yield: 95%. 1H NMR (400 MHz, CDCl$_3$) δ 7.86 (d, $J = 1.5$ Hz, 1H), 7.59 (dd, $J = 7.9, 1.5$ Hz, 1H), 7.44 (d, $J = 7.9$ Hz, 1H), 1.34 (s, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 136.55, 135.49, 133.74, 132.26, 130.00, 84.33, 24.84. GC-MS: RT=13.97 min, $M^+ = 272.1$, vs MW= 272.96 g mol$^{-1}$.

![Structural formula of 1,2-Dichloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (1).](image)
GC-MS Chromatogram of 1,2-Dichloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (1).
2-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborol-2-yl)toluene (2).
Reddish oil. Yield: 92% (p-isomer: m-isomer = 2a:2b = 40:60)\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) (p-isomer) 7.68 (s, 1H), 7.57 (d, \(J = 8.0\) Hz, 1H), 7.33 (d, \(J = 8.0\) Hz, 1H), 2.38 (s, 6H), 1.33 (s, 24H); (m-isomer) 7.78 (s, 2H), 7.21 (d, \(J = 7.5\) Hz, 2H), 2.38 (s, 6H), 1.33 (s, 24H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 139.07, 137.61, 137.21, 135.82, 135.13, 135.08, 134.11, 133.39, 132.77, 130.81, 130.39, 128.91, 128.41, 126.97, 126.45, 83.85, 83.83, 82.86, 24.72, 24.39, 20.16, 19.64. GC-MS: 2a: RT=13.04 min, \(M^+ = 252.1\) vs MW= 252.55 g.mol\(^{-1}\); 2b: RT = 13.18 min, \(M^+ = 252.1\), vs MW= 252.55 g.mol\(^{-1}\).
GC-MS Chromatogram of 2-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene (2).
1,4-dichloro-5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (3 a).
Transparent crystals. Yield: 70%. 1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, J = 1.8 Hz, 1H), 7.30 – 7.27 (m, 2H), 1.37 (s, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 137.75, 136.04, 132.12, 131.70, 130.70, 84.51, 24.78. GC-MS: RT = 13.67 min, $M^+ = 272$ vs MW = 272.96 g.mol$^{-1}$.

![Chemical Structure](image)
GC-MS Chromatogram of 1,4-dichloro-5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene
1,4-dichloro-2,5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (3 b).
White solid. Yield: 6 % (49 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.63 (s, 2H), 1.36 (s, 24H). 13C NMR (151 MHz, CDCl$_3$) δ 137.16, 136.78, 84.52, 24.79.
3-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene (4).
White solid. Yield: 86%. 1H NMR (600 MHz, CD$_2$Cl$_2$) δ 7.52 (s, 1H), 7.46 (s, 1H), 7.26 (s, 1H), 2.33 (s, 3H), 1.32 (s, 12H). 13C NMR (101 MHz, CD$_2$Cl$_2$) δ 139.10, 133.17, 133.03, 131.26, 130.90, 83.67, 24.25, 20.33. GC-MS: RT=13.07 min, M^+ = 252.1 vs MW = 252.55 g·mol$^{-1}$.
GC Chromatogram of 3-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene (4)
3-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole (5).
Transparent oil. Yield: 87%. 1H NMR (600 MHz, CDCl$_3$) δ 7.37 (s, 1H), 7.22 – 7.16 (m, 1H), 6.99 (s, 1H), 3.82 (s, 3H), 1.34 (s, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 159.88, 134.57, 126.84, 117.71, 117.43, 84.15, 55.52, 24.82. GC-MS: RT=14.55 min, M^+ = 268.1 vs MW= 268.54 g.mol$^{-1}$.
GC-MS Chromatogram of 3-Chloro-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole (5).

(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene (6).
Transparent oil. Yield: 82% (m-isomer: 3,5-Bis-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene: p-isomer= 6a: 6b:6c= 60:5:35). \(^1\)H NMR (600 MHz, Acetone-\(d_6\)) \(\delta \) (m-isomer) 7.58 (m, 8H), 7.56 (d, \(J = 7.0\) Hz, 9H), 7.27 (dt, \(J = 14.6, 7.4\) Hz, 17H), 2.34 (s, 40H), 1.32 (s, 66H); (m-p-isomer) 8.05 (s, 1H), 7.68 (m, 2H), 2.36 (s, 4H), 1.34 (s, 32H); (p-isomer) 7.66 (d, 10H), 7.19 (d, \(J = 7.5\) Hz, 10H), 1.33 (s, 95H); \(^{13}\)C NMR (151 MHz, Acetone-\(d_6\)) \(\delta \) 206.00, 138.93, 137.70, 136.12, 135.60, 132.73, 132.57, 129.25, 128.47, 84.46, 84.39, 84.30, 25.28, 25.01, 21.77, 21.40, 21.29. GC-MS: 6a: RT=10.82 min, \(M^+ = 218.2\) vs MW= 218.10 g.mol\(^{-1}\); 6b: RT=17.97 min, \(M^+ = 344.2\) vs MW= 344.07 g.mol\(^{-1}\); 6c: RT=10.94 min, \(M^+ = 218.2\) vs MW= 218.10 g.mol\(^{-1}\).
GC-MS Chromatogram of (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene (6).
4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl) -o-xylene (7).
Transparent oil. Yield: 81%. 1H NMR (600 MHz, CDCl$_3$) δ 7.58 (s, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H), 1.34 (s, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 140.09, 135.91, 135.83, 132.38, 129.13, 83.51, 24.82, 19.98, 19.44; GC-MS: RT=12.52 min, M$^+$ = 232.2 vs MW= 232.13 g.mol$^{-1}$.
GC-MS Chromatogram 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-o-xylene (7).

(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole (8).
Orange oil. Yield: 90%. (m-isomer: 3,5-bis-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole; p-isomer = 8a:8b:8c = 65:20:15). 1H NMR (600 MHz, CDCl₃) δ (m-isomer:8a) 7.40 (d, 8Hz, 1H), 7.32 (d, 2.8 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.00 (dd, 2.8 Hz, 8Hz, 1H), 3.83 (s, 3H), 1.33 (s, 12H); (m-m-isomer) 7.87 (s, 1H), 7.43 (s, 2H), 3.83 (s, 3H), 1.33 (s, 24H); (p-isomer: 8c) 7.75 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 1.33 (s, 12H); 13C NMR (151 MHz, CDCl₃) δ 159.04, 136.50, 133.61, 128.92, 127.18, 122.81, 118.72, 117.89, 113.31, 83.82, 83.77, 55.33, 55.25, 24.86, 24.81; GC-MS: 8a: RT=12.82 min, M⁺ = 234.2 vs MW= 234.1 g.mol⁻¹; 8b: RT=19.19 min, M⁺ = 360.2 vs MW= 360.06 g.mol⁻¹; 8c: RT=12.55 min, M⁺ = 234.1 vs MW= 234.1 g.mol⁻¹.
GC-MS Chromatogram of (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole (8).

1,3-dichloro-5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (9).
Light yellow oil. Yield: 84%. 1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, $J = 2.0$ Hz, 2H), 7.43 (t, $J = 2.0$ Hz, 1H), 1.34 (s, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 134.71, 132.69, 131.07, 84.50, 24.83; GC-MS: RT=13.56 min, M$^+$ = 272.0 vs MW= 272.96 g.mol$^{-1}$.

![Chemical structure of 1,3-dichloro-5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (9).]
(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (10).

Transparent oil. Yield = 90 %. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.77 – 7.69 (m, 2H), 7.47 – 7.39 (m, 1H), 7.34 (t, $J = 7.3$ Hz, 2H), 1.31 (s, 12H); 13C NMR (101 MHz, CD$_2$Cl$_2$) δ 135.14, 131.71, 128.23, 84.34, 25.24; GC-MS: RT=9.50 min, M$^+$ = 204.1 vs MW= 204.08 g.mol$^{-1}$.
GC-MS Chromatogram of (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (10).

S3. Catalyst recycling and ICP-OES analysis of Iridium PIB1000-BPY –catalyst in the borylation reaction of 1,2-dichlorobenzene

Procedure:

In a glove box, to a mixture of the isolated (PIB1000-bpy)Ir(COD)(Bpin)3 (45 mg, mmol) and Pin2B2 (210 mg, 0.825 mmol) in dry heptane (2.26 mL) was added 1,2-dichlorobenzene (170 μL, 1.5 mmol) at room temperature for 18 h. After the completion of 18 h, the reaction mixture was concentrated under reduced pressure and 2 mL of acetonitrile was added which resulted in precipitation of the PIB-bound catalyst forming a biphasic mixture. This biphasic mixture was centrifuged (Speed: 10000 rpm/min) for 15 min which leads to complete separation of the nonpolar catalyst from the product containing acetonitrile phase. The product containing acetonitrile phase was collected and this biphasic separation procedure was repeated 3 more times to ensure complete separation of the product from the catalyst. The product was collected after removing the acetonitrile under reduced pressure.

[Chemical structure of the reaction]

C-H borylation of 1,2-dichlorobenzene catalyzed by recyclable and reusable iridium PIB1000-bpy –catalyst a,b
The Iridium PIB1000-bpy catalyst was regenerated from direct C-H borylation conditions and isolated by centrifuge.

The 3 cycles were performed at room temperature for 18 h with 1,2-dichlorobenzene (2 mmol), bis(pinacolato)diboron (1.1 mmol), and recycled catalyst.

ICP-OES analysis of Iridium PIB1000-bpy catalyst.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Yield (%)</th>
<th>Mass of the iridium PIB1000-bpy catalyst (mg) after reaction</th>
<th>Mass of the iridium PIB1000-bpy catalyst (mg) before reaction</th>
<th>Ir containing c in iridium PIB1000-bpy catalyst (C<sub>theoretical</sub> = 43.5 ppm)</th>
<th>Ir containing in the product (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>60</td>
<td>10 mg of Ir and 51 mg of ligand</td>
<td>49 ppm</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>45</td>
<td>45 mg</td>
<td>42 ppm</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
<td>37</td>
<td>36 mg</td>
<td>44 ppm</td>
<td>0.1</td>
</tr>
</tbody>
</table>

a Iridium PIB₁₀₀₀-bpy catalyst was regenerated from direct C-H borylation conditions and isolated by centrifuge.

b The 3 cycles were performed at room temperature for 18 h with 1,2-dichlorobenzene (2 mmol), bis(pinacolato)diboron (1.1 mmol), and recycled catalyst.

c ICP-OES analysis of Iridium PIB₁₀₀₀-bpy catalyst.

![Borylation reaction of 1,3-dichlorobenzene](image)

S5. References

(S1) Priyadarshani N., Liang Y., Suriboot J., Bazzi H. S., Bergbreiter D. E., ACS Macro Lett. 2013, 2, 571-574.

(S3) Maegawaa Y., Inagaki S., Dalton Trans. 2015, 44, 13007–13016.
