A new strategy to make an artificial enzyme: Photosystem II around

nanosized manganese oxide

Mohammad Mahdi Najafpour,^{a,b*} Sepideh Madadkhani⁺,^a Somayyeh Akbarian⁺,^a Małgorzata Hołyńska,^c

Mohsen Kompany-Zareh,^{a,b} Tatsuya Tomo,^d Jitendra Pal Singh,^e Keun Hwa Chae^e and Suleyman I.

 $Allakhverdiev^{f\text{-}h}$

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^bCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^cFachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

^dDepartment of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

^eAdvanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02793, Republic of Korea

^fControlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia

^gInstitute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia

^hDepartment of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia

*Corresponding author; Phone: (+98) 24 3315 3201; E-mail: mmnajafpour@iasbs.ac.ir

‡These authors contributed equally to the work.

Fig. S1 The (HR)TEM images of the obtained the Mn oxide in the absence of APSII.

Fig. S2 The (HR)TEM images of APSII.

Fig. S3 The (HR)TEM images of **1**.

Fig. S3 The (HR)TEM images of 1 (continue).

Fig. S4 The SEM images of the obtained the Mn oxide in the absence of APSII.

Fig. S5 The SEM images of 1.

Fig. S7 The excitation-emission landscapes of PSII (initial volume = 10 ml and C = 0.001 g/ml) in titration. with 0.2 M acid and base in range of pH=2-12.

Fig. S8 The excitation-emission landscapes of APSII (initial volume = 10 ml and C = 0.001 g/ml) in titration with 0.2 M acid and base in range of pH=2-12.

Fig. S9 The excitation-emission landscapes of **1** (initial volume = 10 ml and C = 0.0006 g/ml) in titration with 0.2 M acid and base in range of pH=2-12.