Supporting Information

3D Charged Grid Induces a High Performance Catalyst: Ruthenium

Clusters Enclosed in X-zeolite for Hydrogenation of Phenol to

Cyclohexanone

Zhiyang Zhang, Liping Ding, Jing Gu, Yanle Li, Nianhua Xue, Luming Peng, Yan Zhu, Weiping Ding*

Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Figure S1. The N₂ adsorption/desorption isotherms of different samples.

Figure S2. The in-situ DRIFTS of CO adsorption on NaX zeolite. (There are two CO bands located at 2173 cm⁻¹ and 2118 cm⁻¹, associated respectively with the formation of OH-CO adducts and gas phase CO.)

Figure S3. The adsorption model of FITC over the Ru@NaX and Ru/NaX.

Figure S4. The three-dimensional fluorescence spectrum of (a) 1,10-phenanthrolinemonohydrate (PM); (b) PM/Ru@NaX; (c) PM/Ru/NaX; (d) The adsorption model of PM over the Ru@NaX and Ru/NaX.

Figure S5. The H₂-TPD experimental curves for different samples.

	Loading	Reaction conditions				Catalytic p		
Catalyst	(%)	Temperature	Pressure	Time	Salvant	Conversion	Selectivity	Ref.
		(K)	(MPa)	(h)	Solvent	(%)	(%)	
Ru/γ-Al ₂ O ₃	5.0	433	5.0	2	water	81.5	87.0	1
Ru/MIL-101	5.0	323	0.5	4	water	90.0	90.0	2
Ru/MSN	2.1	323	1.0	1	CH_2Cl_2	1.1	64.9	3
Ru/K-10	~	298	0.4	3	water	23.0	38.5	4
Ru/γ - Al_2O_3	~	433	5.0	2	cyclohexane	88.0	83.0	5
Ru/C	5.0	328	10.0	2	CO_2	30.0	5.0	6
Ru@NDCs	3.0	313	0.5	2	water	52.0	2.0	7
Ru@C	5.0	328	10	2	water	30.0	5.0	8

Table S1. The catalytic performance of phenol selective hydrogenation for ruthenium catalysts in literatures

Table S2. The catalytic performance of phenol selective hydrogenation for different catalysts in literatures

	Loading	Reaction conditions			Catalytic performance			
Catalyst	(%)	Temperature	Pressure	Time	Solvent	Conversion	Selectivity	Ref.
		(K)	(MPa)	(h)	Solvent	(%)	(%)	
Pd@sMMT-1	1.5	308	0.1	15	water	99.0	98.0	9

Pd/CeO ₂	1.0	298	0.1	4	water	86.2	96.3	10
Pd@CN	~	318	0.1	4	water	100.0	99.0	11
Pd/C-AlCl ₃	5.0	303	1.0	12	water	99.9	99.9	12
Pd/FDU-N	5.0	373	0.1	1	water	80.0	99.0	13
Pd/UHT	2.0	453	0.1	4	vapour-phase	95.0	85.0	14
Pd/TiO ₂ -C	1.1	373	0.5	~	water	99.0	98.0	15
Pd-NPs	2.0	363	0.1	16	water	99.7	99.5	16
Pd/MIL-101	4.9	323	0.5	2	water	90.0	98.6	17
Pd/Al ₂ O ₃	~	490	no	~	CH ₃ OH/H ₂ O	82.5	77.1	18
Pd-La-B		393	1.0	4	water	79.0	38.0	19
Pd@mpg-C3N4	5.0	373	0.1	1	water	99.0	99.0	20

 Table S3. Textural properties and Ru content (%) of different samples.

Entry	Sample	$S_{BET}{}^a\left(m^2g{}^{\text{-}1}\right)$	PV ^b (cm ³ g ⁻¹)	PS ^c (nm)	Ru Content (%, ICP-AES)
1	NaX	682.2	0.14	2.07	0
2	Ru/NaX	632.3	0.18	2.14	0.57
3	Ru@NaX	584.5	0.19	2.01	0.58
4	Ru/Al ₂ O ₃	134.3	0.45	11.43	0.59
5	Ru/TiO ₂	60.8	0.14	3.45	0.57
6	Ru/SiO ₂	387.3	0.87	2.56	0.59
7	Ru/CeO ₂	92.2	0.17	3.8	0.64
8	Ru/HAP	105.0	0.44	12.8	0.56
9	Ru/ZrO ₂	72.9	0.09	3.6	0.63
10	Ru/C	1510.9	0.98	0.75	0.57
11	Ru/Fe ₃ O ₄	49.5	0.67	10.5	0.55

^a BET surface area, ^b Pore volume, ^c Pore size.

References:

- A. M. Raspolli Galletti, C. Antonetti, I. Longo, G. Capannelli and A. M. Venezia, *APPL CATAL A-GEN*, 2008, **350**, 46-52.
- I. E. Ertas, M. Gulcan, A. Bulut, M. Yurderi and M. Zahmakiran, *MICROPOR MESOPOR MAT*, 2016,
 226, 94-103.
- 3. C. Huang, X. Yang, H. Yang, P. Huang, H. Song and S. Liao, APPL SURF SCI, 2014, 315, 138-143.
- 4. S. Agarwal and J. N. Ganguli, RSC ADV, 2014, 4, 11893.
- A. M. Raspolli Galletti, C. Antonetti, S. Giaiacopi, O. Piccolo and A. M. Venezia, *TOP CATAL*, 2009,
 52, 1065-1069.
- 6. C. V. Rode, U. D. Joshi, O. Sato and M. Shirai, CHEM COMMUN, 2003, 1960.
- X. Cui, A. Surkus, K. Junge, C. Topf, J. Radnik, C. Kreyenschulte and M. Beller, *NAT COMMUN*, 2016, 7, 11326.
- 8. Y. Li, X. Xu, P. Zhang, Y. Gong, H. Li and Y. Wang, *RSC ADV*, 2013, **3**, 10973-10982.
- 9. C. Lin, S. Huang, N. Lai and C. Yang, ACS CATAL, 2015, 5, 4121-4129.
- 10. N. C. Nelson, J. S. Manzano, A. D. Sadow, S. H. Overbury and I. I. Slowing, ACS CATAL, 2015, 5, 2051-2061.
- 11. X. Xu, H. Li and Y. Wang, CHEMCATCHEM, 2014, 6, 3328-3332.
- 12. H. Liu, T. Jiang, B. Han, S. Liang and Y. Zhou, SCIENCE, 2009, 326, 1250-1252.
- 13. Z. Li, J. Liu, C. Xia and F. Li, ACS CATAL, 2013, 3, 2440-2448.
- 14. S. Narayanan and K. Krishna, APPL CATAL A-GEN, 1996, 147, 253-258.
- 15. J. Matos and A. Corma, APPL CATAL A-GEN, 2011, 404, 103-112.
- 16. J. Zhu, G. Tao, H. Liu, L. He, Q. Sun and H. Liu, GREEN CHEM, 2014, 16, 2664-2669.
- 17. D. Zhang, Y. Guan, E. J. M. Hensen, L. Chen and Y. Wang, CATAL COMMUN, 2013, 41, 47-51.

- 18. Y. Xiang, L. Kong, C. Lu, L. Ma and X. Li, REAC KINET MECH CAT, 2010, 100, 227-235.
- 19. L. Zhuang, H. Li, W. Dai and M. Qiao, CHEM LETT, 2003, 32, 1072-1073.
- 20. Y. Wang, J. Yao, H. Li, D. Su and M. Antonietti, JAM CHEM SOC, 2011, 133, 2362-2365.