Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Methane decomposition to tip and base grown carbon nanotubes and COx free H₂ over mono and bimetallic 3d transition metal catalysts

Deepa Ayillath Kutteri,^a I-Wen Wang,^a Anupam Samanta,^a Lili Li*^b and Jianli Hu*^a

^a Chemical & Biomedical Engineering Department, West Virginia University, Morgantown, WV.

^bSchool of Life Science and Agriculture, Zhouko Normal University, Zhouko, Henan, China

*Corresponding author: Email Address: Jianli Hu: john.hu@mail.wvu.edu; Lili Li: <u>13672165360@163.com</u>

<u>I. Figures</u>

Figures S1(a), (b). XRD of fresh mono and bimetallic Ni-Fe catalysts.

Figure S2. XRD of spent mono and bimetallic Ni-Fe catalysts.

Figures S3 (a), (b). XRD of fresh mono and bimetallic Ni-Co catalysts.

Figure S4. XRD of spent mono and bimetallic Ni-Co catalysts.

Figures S5 (a), (b). XRD of fresh mono and bimetallic Fe-Co catalysts.

Figure S6. XRD of spent mono and bimetallic Fe-Co catalysts.

Figure S7. TPR analysis of fresh Ni-Fe catalysts.

Figure S8. TPR analysis of fresh Ni-Co catalysts.

Stability of bimetallic catalysts is higher than that of monometallic ones due to the alloy formation as shown in Figures S7, S8 and S9.

Figure S10. H_2 yield over Ni-Fe/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 60 minutes, GHSV = 42000h⁻¹.

Figure S11. Amount of carbon formed over Ni-Fe/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 0-60 minutes, GHSV = 42000 h^{-1} .

Figure S12. H₂ yield over Ni-Co/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 0-60 minutes, GHSV = 42000h⁻¹.

Figure S13. Amount of carbon formed over Ni-Co/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 60 minutes, GHSV = 42000 h^{-1} .

Figure S14. H₂ yield over Fe-Co/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 60 minutes, $GHSV = 42000h^{-1}$.

Figure S15. Amount of carbon formed over Fe-Co/SiO₂ catalysts with various mole ratios at T = 650 °C, TOS = 60 minutes, GHSV = 42000h⁻¹.

Figure S16. Methane decomposition over reduced and oxidised forms of $9Ni-1Fe/SiO_2$ catalysts at T = 650 °C, TOS = 60 minutes, GHSV = $42000h^{-1}$.

Figure S17. Tip and base grown CNT's over $9Ni-1Co/SiO_2$ catalysts at T = 650 °C, TOS = 60 minutes, GHSV = $42000h^{-1}$.

Figure S18. Tip and base grown CNT's over 1Fe-2Co/SiO2 catalysts at T = 650 °C, TOS = 60 minutes, GHSV = 42000h⁻¹.

II. Tables

Ni-Fe catalysts	Ni:Fe mole ratios	Ni (wt%)	Fe (wt%) -	Crystallite size (XRD) (nm)	
				Fresh	Spent
Fe/SiO ₂		0	60	29	13
1Ni-2Fe/SiO ₂	1:2	20.67	39.33	19	22
1Ni-1Fe/SiO ₂	1:1	30.75	29.25	17	20
2Ni-1Fe/SiO ₂	2:1	38.67	21.33	9	9
4Ni-1Fe/SiO ₂	4:1	48	12	10	12
9Ni-1Fe/SiO ₂	9:1	54	6	20	20
Ni/SiO ₂		60	0	25	25
Ni-Co catalysts	Ni:Co mole ratios	Ni (wt%)	Co (wt%)	Fresh	Spent
Co/SiO ₂		0	60	21	24
1Ni-9Co/SiO ₂	1:9	5.98	54.02	22	26
1Ni-1Co/SiO ₂	1:1	29.94	30.06	23	24
2Ni-1Co/SiO ₂	2:1	39.97	20.03	25	25
4Ni-1Co/SiO ₂	4:1	47.96	12.04	24	26
9Ni-1Co/SiO ₂	9:1	53.97	6.02	25	25
Fe-Co catalysts	Fe:Co mole ratios	Fe (wt%)	Co (wt%)	Fresh	Spent
9Fe-1Co/SiO ₂	9:1	53.70	6.30	28	31
4Fe-1Co/SiO ₂	4:1	47.48	12.52	26	28
2Fe-1Co/SiO ₂	2:1	39.27	20.90	23	25
1Fe-1Co/SiO ₂	1:1	29.19	30.81	17	18
1Fe-2Co/SiO ₂	1:2	19.29	40.71	17	18
1Fe-9Co/SiO ₂	1:9	5.70	54.30	17	19

Table S1. Metal compositions and crystallite size (XRD) values of fresh and spent of mono/bimetallic Ni/Fe/Co catalysts.

Higher activity of bimetallic catalysts can be possibly due to decrease in crystallite size, which corresponds to higher active sites. Slight variation in catalyst activity was observed after regeneration possibly due to sintering of metal nanoparticles during the course of the reaction.

Table S2. Raman analysis data (I_D/I_G values) of CNT's over mono and bimetallic Ni/Fe/Co catalysts.

Ni-Fe Catalysts	I_D/I_G
Fe/SiO ₂	1.260
1Ni-2Fe/SiO ₂	0.817
1Ni-1Fe/SiO ₂	0.944
2Ni-1Fe/SiO ₂	0.949
4Ni-1Fe/SiO ₂	0.829
9Ni-1Fe/SiO ₂	0.874
Ni/SiO ₂	0.883
Ni-Co Catalysts	I _D /I _G
Co/SiO ₂	0
1Ni-9Co/SiO ₂	0
1Ni-1Co/SiO ₂	0.868
2Ni-1Co/SiO ₂	1.084
4Ni-1Co/SiO ₂	0.887
9Ni-1Co/SiO ₂	0.765
1Fe-9Co/SiO ₂	1.042
Fe-Co Catalysts	I_D/I_G
9Fe-1Co/SiO ₂	0.997
4Fe-1Co/SiO ₂	0.896
2Fe-1Co/SiO ₂	0.983
1Fe-1Co/SiO ₂	1.019
1Fe-2Co/SiO ₂	1.021

GHSV (h ⁻¹)	CH4 Conversion (%)
42000	47
21000	36

Table S3. Effect of space velocities on CH4 conversion over Fe/SiO2 catalysts

Reaction conditions: 30% CH4, Catalyst = 0.1g, T = 700 °C, TOS = 60 minutes,