Supporting Information

Phosphine-free cobalt pincer complex catalyzed Z-selective semi-hydrogenation of unbiased alkynes

Vinod G. Landge,1 Jayaraman Pitchaimani,2 Siba P. Midya,1 Murugan Subaramanian,1 Vedichi Madhu,2,* and Ekambaram Balaraman1,*

1 Catalysis Division, Dr. HomiBhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune - 411008, INDIA.
2 Department of Chemistry, Karunya University, Coimbatore - 641 114, INDIA.

Contents

1. General Information S2
2. Experimental Section S3-S8
3. Mechanistic Investigation S9-S16
4. Characterization Data S17-S18
5. X-ray Crystal Structure Determination of 1A S18
6. References S19
7. Copy of Spectra S20-S29

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.
This journal is © The Royal Society of Chemistry 2017
1. **General Information**

All catalytic experiments were carried out using standard Schlenk techniques. All solvents were reagent grade or better. Deuterated solvents were used as received. Toluene was refluxed over sodium/benzophenoneketyl and distilled under argon atmosphere and stored over sodium. Metal complexes and other chemicals used in catalysis reactions were used without additional purification. Most of the chemicals used in the catalytic reactions (alkynes, alkenes) were purified according to standard procedure. Thin layer chromatography (TLC) was performed using silica gel precoated glass plates, which were visualized with UV light at 254 nm or under iodine. Column chromatography was performed with SiO$_2$ (SilicycleSiliaflash F60 (230-400 mesh). 1H NMR (400 or 500 MHz), 13C{1H} NMR (100 MHz) spectra were recorded on the NMR spectrometer. Deuterated chloroform was used as the solvent, and chemical shift values (δ) are reported in parts per million relative to the residual signals of this solvent [δ 7.26 for 1H (chloroform-d), δ 77.2 for 13C{1H} (chloroform-d). Abbreviations used in the NMR follow-up experiments: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC analysis was carried out using a HP-5 column (30 m, 0.25 mm, 0.25μ). Mass spectra were obtained on a GCMS-QP 5000 instruments with ionization voltages of 70 eV. High resolution mass spectra (HRMS) were obtained on a High-resolution mass spectra (HRMS) were obtained by fast atom bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI) ionization technique (magnetic sector-electric sector double focusing mass analyzer).
2. Experimental Section

2.1 Synthesis of ligands and Cobalt-complexes

2.1.1 Synthesis of Ligands

a) 2,6-bis(morpholinomethyl)pyridine (NNN-L1)

A solution of 2,6-bis(bromomethyl)pyridine (0.3 g, 1.13 mmol) in acetonitrile (30 mL) was added dropwise to solution of morpholine (0.197 g, 2.26 mmol) and K$_2$CO$_3$ (0.468 g, 3.39 mmol) in CH$_3$CN (15 mL), the resulting reaction mixture was allowed to stir for 14 h at 80 °C, then cooled to room temperature. The solvent was evaporated under reduced pressure and the reaction mixture was extracted with chloroform. The organic layer was collected and dried over anhyd. Na$_2$SO$_4$, then evaporated in vacuum under the reduced pressure afforded NNN-L1. Yield (0.282 g, 90%). IR (KBr): ν = 2800 (m), 1575 (m), 1454 (m), 1298 (m), 1111 (s), 906 (m). 1H NMR (500 MHz, CHLOROFORM-d) δ = 7.65 - 7.52 (m, 1H), 7.31 (d, J = 7.6 Hz, 2H), 3.84 - 3.69 (m, 8H), 3.66 (s, 4H), 2.51 (s, 8H). 13C NMR (126 MHz, CHLOROFORM-d) δ = 157.7, 136.7, 121.4, 77.3, 76.7, 66.9, 64.8, 53.7. HRMS (EI): m/z Calcd for C$_{15}$H$_{24}$O$_2$N$_3$: 278.1869; Found: 278.1863.

Scheme 1. Synthesis of cobalt complexes (I-III)
b) 2,6-bis(piperidin-1-ylmethyl)pyridine (NNN-L2)

\[
\text{NNN-L2}
\]

A solution of 2,6-bis(bromomethyl)pyridine (152 mg, 0.55 mmol) in acetonitrile (5 mL) was added dropwise to solution of piperidine (1.1 mmol) and K\textsubscript{2}CO\textsubscript{3} (331 mg, 2.42 mmol) in CH\textsubscript{3}CN (10 mL), the resulting reaction mixture was allowed to stir for 14 h at 80 °C, then cooled to room temperature. The solvent was evaporated under reduced pressure and the reaction mixture was extracted with chloroform. The organic layer was collected and dried over anhyd. Na\textsubscript{2}SO\textsubscript{4}, then evaporated in vacuum under the reduced pressure afforded NNN-L2. Yield (131 mg, 88%). 1H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.70 - 7.54 \text{ (m, 1 H)}, 7.30 \text{ (d, } J = 7.6 \text{ Hz, 2 H)}, 3.62 \text{ (s, 4 H)}, 2.44 \text{ (br. s., 8 H), 1.65 - 1.55 \text{ (m, 8 H)}, 1.50 - 1.41 \text{ (m, 4 H)}}. 13C NMR (126 MHz, CHLOROFORM-d) \(\delta = 158.4, 136.4, 121.0, 77.3, 76.7, 65.3, 54.7, 25.9, 24.2. \) HRMS (El): \(m/z \) Calcd for C\textsubscript{17}H\textsubscript{28}N\textsubscript{3}: 274.2283; Found: 274.2278.

c) 2,6-bis((4-methylpiperazin-1-yl)methyl)pyridine (NNN-L3)

\[
\text{NNN-L3}
\]

A solution of 2,6-bis(bromomethyl)pyridine (0.8 g, 3.0 mmol) in acetonitrile (45 mL) was added dropwise to solution of 1-methylpiperazine (0.669 g, 6.0 mmol) and K\textsubscript{2}CO\textsubscript{3} (1.249 g, 9.0 mmol) in CH\textsubscript{3}CN (20 mL), the resulting reaction mixture was allowed to stir for 14 h at 80 °C, then cooled to room temperature. The solvent was evaporated under reduced pressure and the reaction mixture was extracted with chloroform. The organic layer was collected and dried over anhyd. Na\textsubscript{2}SO\textsubscript{4}, then evaporated in vacuum under the reduced pressure afforded NNN-L3. Yield (0.82 g; 89%). IR (KBr): \(v = 2945 \text{ (s), 2520 (m), 2042 (m), 1452 (s), 1029 (s), 651 (m)}). 1H NMR
(500 MHz, CHLOROFORM-d) $\delta = 7.59$ (s, 1H), 7.28 (s, 2H), 3.66 (s, 4H), 2.54 (s, 8H), 2.46 (s, 8H), 2.28 (s, 6 H). 13C NMR (126 MHz, CHLOROFORM-d) $\delta = 158.0$, 136.6, 121.3, 77.3, 76.7, 64.4, 55.1, 53.2, 46.1. HRMS (EI): m/z Calcd for C$_{17}$H$_{30}$N$_5$: 304.2501; Found: 304.2496.

2.1.2 Synthesis of Cobalt-complexes

Anhydrous CoBr$_2$ (200 mg, 1 equiv.) in methanol (5 mL) was added dropwise to solution of NNN-L1 (1 equiv) in MeOH (2 mL) with stirring. The resulting reaction mixture was allowed to stir for 3 h at room temperature. The resulting solution was evaporated under vacuum afforded the blue color solid; the solid was washed with diethyl ether and dried at air. Yield (136 mg, 82%); IR (KBr): 2962, 2844, 2360, 1611, 1575, 1454, 1441, 1358, 1287, 1112, 1001, 871, 815, 787, 636 cm$^{-1}$. HRMS (EI): m/z Calcd for C$_{15}$H$_{24}$O$_2$N$_3$Br$_2$Co: 494.9567; Found: 494.9562. The crystal suitable for a single-crystal X-ray diffraction was obtained from MeOH : diethyl ether (by diffusion method) at room temperature after one day.

![Figure S1. UV spectra of 1.](image-url)
Anhydrous CoBr$_2$ (200 mg, 1 equiv.) in methanol (5 mL) was added dropwise to solution of NNN-L2 (1 equiv) in MeOH (2 mL) with stirring. The resulting reaction mixture was allowed to stir for 3 h at room temperature. The resulting solution was evaporated under vacuum afforded the blue color solid; the solid was washed with diethyl ether and dried at air. Yield (151 mg, 91%). IR (KBr): 2934, 2853, 2703, 2360, 1610, 1455, 1356, 1263, 1165, 1084, 985, 858, 769, 619 cm$^{-1}$. HRMS (EI): m/z Calcd for C$_{17}$H$_{28}$N$_3$Br$_2$Co: 403.9982; Found: 490.9976.

![Figure S2. UV spectra of II.](image)

Anhydrous CoBr$_2$ (200 mg, 1 equiv.) in methanol (5 mL) was added dropwise to solution of NNN-L3 (1 equiv) in MeOH (2 mL) with stirring. The resulting reaction mixture was allowed to
stir for 3 h at room temperature. The resulting solution was evaporated under vacuum afforded the blue color solid; the solid was washed with diethyl ether and dried at air. Yield (103 mg, 62%). IR (KBr): 2962, 2844, 2360, 1611, 1575, 1454, 1441, 1358, 1287, 1112, 1001, 871, 815, 787, 636 cm\(^{-1}\). HRMS (EI): \(m/z\) Calcd for C\(_{17}\)H\(_{30}\)N\(_5\)Br\(_2\)Co: 521.0194; Found: 521.0200.

![Figure S3. UV spectra of III.](image)

2.2 General Procedure for Z selective semi-hydrogenation of internal alkynes

To an oven-dried 10 mL screw-capped vial, alkyne 1 (0.5mmol), ammonia-borane (0.6 mmol), Co-complex I (2-4 mol%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 10-14 h at 50-80 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The yield of alkene was determined by GC. The crude \(^1\)H NMR has been recorded and the compound data was in good accordance with the literature.
2.3 General Procedure for semi-hydrogenation of terminal alkynes

![Chemical structure of alkynyl compound 4 and reaction conditions](attachment://image.png)

To an oven-dried 10 mL screw-capped vial, terminal alkyne 4 (0.5 mmol), ammonia-borane (0.6 mmol), Co-complex I (2 mol%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated \textit{in vacuo}. The yield of alkene was determined by GC.

2.4 General Procedure for hydrogenation of terminal alkenes

![Chemical structure of alkenyl compound 5 and reaction conditions](attachment://image.png)

To an oven-dried 10 mL screw-capped vial, alkene 5 (0.5 mmol), ammonia-borane (0.6 mmol), catalyst I (4 mol%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 14 h at 80 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated \textit{in vacuo}. The yield of alkene was determined by GC.
3. Mechanistic Investigation

3.1 H₂ detection

To an oven-dried 10 mL screw-capped vial, alkyne 1a (0.1 mmol), ammonia-borane (0.15 mmol), Co complex I (4 mol%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature.

![Chemical Reaction Diagram](image)

Figure S4. GC of gaseous sample.
3.2 Labeling experiment

To an oven-dried 10 mL screw-capped vial, alkyne 1a (0.1 mmol), ammonia-borane (0.15 mmol), I (4 mol%) and CD$_3$OD (2 mL) were added under a gentle stream of argon. The mixture was stirred for 14 h at 80 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: pet ether) to afford the desired product 2a (90% yield).

![Diagram of chemical reaction]

Figure S5.1H NMR of [D]-2a.
3.3 Determination of the dehydrogenation product of ammonia-borane

i) $\text{H}_3\text{N}:\text{BH}_3 \xrightarrow{\text{Cat. I}} \text{B(OMe)}_3 + \text{H}_2$

Conversion of AB = 100%

ii) $\text{H}_3\text{N}:\text{BH}_3 \xrightarrow{\text{no cat.}} \text{B(OMe)}_3 + \text{H}_2$

Conversion of AB = 8%

iii) $\text{H}_3\text{N}:\text{BH}_3 + \text{1a} \xrightarrow{\text{Cat. I}} 2\text{a} + \text{B(OMe)}_3 + \text{H}_2$

3.3.1 Dehydrogenation of ammonia-borane

To an oven-dried J Young NMR tube, ammonia-borane (0.15 mmol), Co-complex I (2 mol%), methanol (0.2 mL) in D$_8$-THF (0.3 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature. Then submitted for 11B NMR which show that complete conversion of AB into B(OMe)$_3$ (also confirmed by GC-MC) and the formation of dihydrogen was detected on GC.

The above experiment was carried out under identical conditions in the absence of I and only 8% of B(OMe)$_3$ was observed.

![Figure S6. 11B NMR of Reaction mixture.](image-url)
3.3.2 Dehydrogenation of ammonia-borane in presence (AB) of 1a

To an oven-dried J Young NMR tube, alkyne 1a (0.1 mmol), ammonia-borane (0.15 mmol), Co-complex I (4 mol%), methanol (0.2 mL) in D_8-THF (0.3 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature. Then submitted for ^{11}B NMR which show that complete conversion of AB into B(OMe)_3 (also confirmed by GC-MC).

![Figure S7. ^{11}B NMR of Reaction mixture.](image)

![Figure S8. GC-MC of Reaction mixture.](image)
3.4 Isomerisation experiment

\[
\begin{align*}
\text{Ph} & \equiv \text{Ph} \\
2a & \xrightleftharpoons{\text{I (2 mol\%)} \atop \text{MeOH, 50 °C, 8 h}} \text{Ph} \equiv \text{Ph}
\end{align*}
\]

3.4.1 In absence of ammonia-borane(AB)

To an oven-dried 10 mL screw-capped vial, alkyne 1a (0.1 mmol), Co-complex I (2 mol\%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo.

3.4.2 In presence of ammonia-borane(AB)

To an oven-dried 10 mL screw-capped vial, alkyne 1a (0.1 mmol), ammonia-borane (0.15 mmol), Co-complex I (2 mol\%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 8 h at 50 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The yield of alkene was determined by GC.

\[
\begin{align*}
\text{Ph} & \equiv \text{Ph} \\
2a & \xrightleftharpoons{\text{I (2 mol\%) \atop \text{H}_3\text{N:BH}_3 \atop \text{MeOH}}} \text{Ph} \equiv \text{Ph} + \text{Ph} \equiv \text{Ph}
\end{align*}
\]

3.5 Intermolecular competitive experiment

\[
\begin{align*}
\text{F} \equiv & \text{F} \\
1b & \xrightleftharpoons{\text{std. conditions} \atop 4 \text{ h}} \quad \text{MeO} \equiv \text{MeO} \\
1c & \quad \text{F} \equiv \text{F}
\end{align*}
\]

\[
\begin{align*}
\text{F} & \equiv \text{F} \\
2b (25\%) & \quad \text{MeO} \equiv \text{MeO} \\
2c (60\%) & \quad \text{OMe} \equiv \text{OMe}
\end{align*}
\]
To an oven-dried 10 mL screw-capped vial, 1b and 1c (each 0.5 mmol), ammonia-borane (0.6 mmol), Co-complex I (4 mol%) and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 4 h at 80 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The yields of alkenes (2b and 2c) were determined by GC with diphenyl as the internal standard.

3.6 Competitive experiment (Alkyne vs Alkene)

To an oven-dried 10 mL screw-capped vial, all eleven parallel reaction kept using 4-methyl phenyl acetylene (0.1 mmol), styrene (0.1 mmol), ammonia-borane 2 (0.2 mmol), I (4 mol%), n-decane (0.1 mmol), and MeOH (2 mL) were added under a gentle stream of argon. The mixture was stirred at 50 °C (bath temperature). At regular time intervals, the reaction mixture was analyzed on GC.

![Figure S9. Kinetic profile.](image-url)
3.7 Temperature-switch Chemoselectivity

To an oven-dried 10 mL screw-capped vial, 4-methyl phenyl acetylene (0.1 mmol), ammonia-borane (0.2 mmol), I (4 mol%), n-decane (0.1 mmol), and MeOH (2 mL) were added under a gentle stream of argon. The mixture was stirred at 50 °C (bath temperature) for about 8 h and the reaction mixture analyzed on GC (5d is 96%). To that, an additional catalyst I (4 mol%) and ammonia-borane (0.2 mmol) was added and continued the heating at 80 °C for 14 h.

3.7 Homogenous test

To an oven-dried 10 mL screw-capped vial, 1a (0.5 mmol), ammonia-borane (0.6 mmol), I (4 mol%), 10 equiv. of mercury and methanol (1 mL) were added under a gentle stream of argon. The mixture was stirred for 12 h at 50 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The yield of alkene was determined by GC.

3.8 Purification of alkenes from alkyne impurities

To an oven-dried 10 mL screw-capped vial, 1d (0.05 mmol), 2a (5 mmol), ammonia-borane (5.1 mmol), I (2 mol%), and methanol (2 mL) were added under a gentle stream of argon. The mixture was stirred for 20 h at 80 °C (bath temperature) followed by cooling to room temperature. The mixture was filtered through a celite pad with several washings (3 x 3 mL dichloromethane) and concentrated in vacuo. The yield of alkene was determined by GC.
dichloromethane) and concentrated in vacuo. The conversion alkyne and the yield of alkene were determined by GC.

4. Characterization Data

(Z)-1,2-diphenylethene (2a)

\[
\begin{align*}
\text{H NMR} & \text{ (400 MHz, CHLOROFORM-d)} \\
& \delta = 7.30 (d, J = 9.2 \text{ Hz}, 10 \text{ H}), 6.67 (s, 2 \text{ H}).
\end{align*}
\]

(Z)-1,2-bis(4-fluorophenyl)ethane (2b)

\[
\begin{align*}
\text{H NMR} & \text{ (500 MHz, CHLOROFORM-d)} \\
& \delta = 7.24 - 7.15 (m, 4 \text{ H}), 6.93 (t, J = 8.8 \text{ Hz}, 4 \text{ H}), 6.55 (s, 2 \text{ H}).
\end{align*}
\]

\[
\begin{align*}
\text{C NMR} & \text{ (126 MHz, CDCl}_3) \\
& \delta = 162.8, 160.9, 133.0, 133.0, 130.5, 130.4, 129.1, 115.3, 115.2.
\end{align*}
\]

(Z)-1,2-bis(4-methoxyphenyl)ethane (2c)

\[
\begin{align*}
\text{H NMR} & \text{ (500 MHz, CHLOROFORM-d)} \\
& \delta = 7.23 (d, J = 8.8 \text{ Hz}, 4 \text{ H}), 6.80 (d, J = 8.8 \text{ Hz}, 4 \text{ H}), 6.47 (s, 2 \text{ H}), 3.81 (s, 7 \text{ H}).
\end{align*}
\]

\[
\begin{align*}
\text{C NMR} & \text{ (126MHz, CHLOROFORM-d)} \\
& \delta = 158.5, 130.0, 129.3, 128.4, 113.7, 113.6, 55.1
\end{align*}
\]
(Z)-1-methyl-4-styrylbenzene (2d)S4

\[
\text{H NMR (400 MHz, CHLOROFORM-d) } \delta = 7.40 - 7.35 \text{ (m, 2 H), 7.35 - 7.21 (m, 5 H), 7.12 (d, J = 7.9 Hz, 2 H), 6.65 (s, 2 H), 2.40 (s, 3 H).}
\]

13C NMR (101MHz, CHLOROFORM-d) $\delta =$ 137.5, 136.8, 134.3, 130.2, 129.5, 128.9, 128.8, 128.8, 128.2, 126.9, 21.2.

(Z)-1-styrylnaphthalene (2e)S6

\[
\text{H NMR (400 MHz, CHLOROFORM-d) } \delta = 8.14 - 8.03 \text{ (m, 1 H), 7.94 - 7.88 (m, 1 H), 7.79 (d, J = 7.3 Hz, 1 H), 7.57 - 7.48 \text{ (m, 3 H), 7.45 - 7.32 (m, 3 H), 7.11 - 7.05 (m, 5 H), 6.86 (d, J = 12.2 Hz, 1 H).}
\]

(Z)-1-chloro-3-styrylbenzene (2f)S4

\[
\text{H NMR (500 MHz, CDCl}_3\text{) } \delta = 7.32 - 7.23 \text{ (m, 6 H), 7.23 - 7.13 \text{ (m, 3 H), 6.70 (d, J = 12.2 Hz, 1 H), 6.57 (d, J = 12.2 Hz, 1 H).}
\]

(Z)-1-bromo-4-styrylbenzene (2g)S4

\[
\text{H NMR (400 MHz, CHLOROFORM-d) } \delta = 7.38 \text{ (d, J = 8.5 Hz, 2 H), 7.29 \text{ (br. s., 5 H), 7.15 (d, J = 8.5 Hz, 2 H), 6.68 (d, J = 12.2 Hz, 1 H), 6.55 (d, J = 12.2 Hz, 1 H).}
\]
(Z)-1-styryl-3,5-bis(trifluoromethyl)benzene (2h)

\[
\begin{array}{c}
\text{F}_3\text{C} \\
\text{CF}_3
\end{array}
\]

\(^1\)H NMR (200 MHz, CHLOROFORM-d) \(\delta = 7.75 - 7.59 \) (m, 3 H), 7.58 - 7.51 (m, 1 H), 7.32 - 7.09 (m, 5 H), 6.83 (d, \(J = 12.1 \) Hz, 1 H), 6.57 (d, \(J = 12.1 \) Hz, 1 H).

(Z)-2-fluoro-4-styrylbenzonitrile (2j)

\[
\begin{array}{c}
\text{F} \\
\text{CN}
\end{array}
\]

\(^1\)H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.30 \) (br. s., 4 H), 7.22 (br. s., 2 H), 7.17 - 7.01 (m, 3 H), 6.85 (d, \(J = 12.2 \) Hz, 1 H), 6.55 (d, \(J = 12.2 \) Hz, 1 H).

(Z)-1-nitro-4-styrylbenzene (2k)

\[
\begin{array}{c}
\text{NO}_2
\end{array}
\]

\(^1\)H NMR (200 MHz, CHLOROFORM-d) \(\delta = 8.06 \) (d, \(J = 8.8 \) Hz, 1 H), 7.58 - 7.48 (m, 3 H), 7.32 - 7.12 (m, 5 H), 6.81 (d, \(J = 12.3 \) Hz, 1 H), 6.60 (d, \(J = 12.3 \) Hz, 1 H).

(Z)-methyl 4-styrylbenzoate (2l)

\[
\begin{array}{c}
\text{CO}_2\text{Me}
\end{array}
\]

\(^1\)H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.92 \) (d, \(J = 8.4 \) Hz, 2 H), 7.33 (d, \(J = 8.0 \) Hz, 2 H), 7.28 - 7.21 (m, 5 H), 6.74 (d, \(J = 12.2 \) Hz, 1 H), 6.64 (d, \(J = 12.6 \) Hz, 1 H), 3.95 - 3.87 (m, 3 H).

S18
\(^{13}\)C NMR (126 MHz, CHLOROFORM-d) \(\delta = 166.9, 142.1, 136.6, 132.2, 129.5, 129.2, 128.8, 128.3, 127.5, 52.0\). HRMS (EI): \(m/z\) Calcd for C\(_{16}\)H\(_{15}\)O\(_2\): 239.1072; Found: 239.1067.

(Z)-5-methyl-2-styrylpyridine (2m)

\[
\begin{array}{c}
\text{N} \\
\text{Me}
\end{array}
\]

\(^1\)H NMR (500 MHz, CHLOROFORM-d) \(\delta = 8.46 - 8.39\) (m, 1 H), 7.29 - 7.23 (m, 6 H), 7.09 (d, \(J = 8.0\) Hz, 1 H), 6.81 (d, \(J = 12.2\) Hz, 1 H), 6.69 (d, \(J = 12.2\) Hz, 1 H).

(Z)-2-styrylthiophene (2n)

\[
\begin{array}{c}
\text{S}
\end{array}
\]

\(^1\)H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.42 - 7.35\) (m, 5 H), 7.12 (d, \(J = 5.0\) Hz, 1 H), 7.00 (d, \(J = 3.4\) Hz, 1 H), 6.92 (dd, \(J = 3.8, 5.0\) Hz, 1 H), 6.73 (d, \(J = 11.8\) Hz, 1 H), 6.61 (d, \(J = 12.2\) Hz, 1 H).

(Z)-hex-1-enylbenzene (2o)

\[
\begin{array}{c}
\text{Me}
\end{array}
\]

\(^1\)H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.40 - 7.31\) (m, 5 H), 7.29 - 7.22 (m, 1 H), 6.46 (d, \(J = 11.8\) Hz, 1 H), 5.72 (td, \(J = 7.4, 11.5\) Hz, 1 H), 2.39 (dd, \(J = 1.3, 7.4\) Hz, 2 H), 1.52 - 1.46 (m, 2 H), 1.45 - 1.38 (m, 2 H), 0.95 (t, \(J = 7.2\) Hz, 3 H).

(Z)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane (2p)

\[
\begin{array}{c}
\text{OTBS}
\end{array}
\]
\text{1H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.43 - 7.30 \text{ (m, 4 H)}, 7.24 \text{ (dt, } J = 2.9, 5.8 \text{ Hz, 1 H),} 6.53 \text{ (d, } J = 11.8 \text{ Hz, 1 H),} 5.73 \text{ (td, } J = 7.4, 11.5 \text{ Hz, 1 H),} 3.74 \text{ (t, } J = 6.7 \text{ Hz, 2 H),} 2.64 - 2.54 \text{ (m, 2 H),} 0.95 - 0.90 \text{ (m, 10 H),} 0.19 - 0.03 \text{ (m, 7 H).} \text{13C NMR (126 MHz, CHLOROFORM-d) \(\delta = 137.5, 130.4, 129.0, 128.7, 128.1, 126.6, 62.9, 32.2, 25.9, 18.4. HRMS (EI): m/z Calcd for C}_{16}H_{17}OSi: 263.1831; Found: 263.1826.}

(Z)-3-phenylprop-2-en-1-ol (2q)

\text{1H NMR (200 MHz, CHLOROFORM-d) \(\delta = 7.39 - 7.10 \text{ (m, 6 H),} 6.54 \text{ (d, } J = 11.7 \text{ Hz, 1 H),} 5.85 \text{ (td, } J = 6.4, 11.8 \text{ Hz, 1 H),} 4.41 \text{ (d, } J = 6.2 \text{ Hz, 3 H),} 2.22 \text{ (br. s., 1 H).}}

(R,Z)-N-benzyl-N-(1-phenylethyl)but-2-en-1-amine (2u)

\text{1H NMR (500 MHz, CHLOROFORM-d) \(\delta = 7.49 \text{ (d, } J = 7.2 \text{ Hz, 2 H),} 7.45 - 7.22 \text{ (m, 8 H),} 5.63 \text{ (br. s., 2 H),} 4.01 \text{ (d, } J = 6.9 \text{ Hz, 1 H),} 3.66 \text{ (d, } J = 14.1 \text{ Hz, 1 H),} 3.56 \text{ (d, } J = 13.7 \text{ Hz, 1 H),} 3.26 \text{ (br. s., 1 H),} 3.05 \text{ (d, } J = 13.4 \text{ Hz, 1 H),} 1.75 - 1.52 \text{ (m, 3 H),} 1.47 \text{ (d, } J = 6.9 \text{ Hz, 3 H).} \text{13C NMR (126 MHz, CHLOROFORM-d) \(\delta = 144.0, 140.8, 128.6, 128.3, 128.1, 128.0, 127.8, 126.6, 126.5, 126.3, 57.8, 53.8, 45.7, 15.8, 13.1. HRMS (EI): m/z Calcd for C}_{19}H_{24}N: 239.1909; Found: 266.1903.}

5. **X-ray Crystal Structure Determination of I**

X-ray intensity data measurements of complex I was carried out on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized (MoKα= 0.71073 Å) radiation between 150(2) - 296 (2) K. The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of
cell constants and an orientation matrix were calculated from three sets of 12 frames (total 36 frames). Data were collected with ω scan width of 0.5° at eight different settings of φ and 2θ with a frame time of 10 sec keeping the sample-to-detector distance fixed at 5.00 cm for all the compounds. The X-ray data collection was monitored by APEX2 program (Bruker, 2006). All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on F^2. Hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms.

Complex I: $\text{C}_{15}\text{H}_{23}\text{Br}_2\text{CoN}_3\text{O}_2$, Blue, block, 0.16 \times 0.16 \times 0.12 mm3, monoclinic, $P2(1)/n$, $a = 10.2514(4)$ Å, $b = 14.6308(6)$ Å, $c = 12.6552(5)$ Å, $\beta = 92.105(4)$ deg., $V = 1896.84(13)$ Å3, $Z = 4$, $fw = 496.11$, $Dc = 1.737$ Mg/m3, $\mu = 5.129$ mm$^{-1}$. Full matrix least-squares of refinement based on F^2 gave an agreement factor $R = 0.0477$ for data with $I > 2\sigma(I)$ and $R = 0.0762$ for all data (2949 reflections) with a goodness-of-fit of 1.104. Idealized hydrogen atoms were placed and refined in the riding mode.

6. References

7. Copy of Spectra
Chemical Shift (ppm)
Chemical Shift (ppm)

2g

Br
Chemical Shift (ppm)
Chemical Shift (ppm)

- 7.95
- 7.93
- 7.36
- 7.35
- 7.27
- 6.75
- 6.67
- 3.94

1.88 2.09 5.04 0.99 1.00 3.15