Supporting information for

Mechanism of SAPO-34 catalyst deactivation in the course of MTO conversion in slurry reactor

Stanislav V. Konnova, Vladimir S. Pavlova, Pavel A. Kotsb, Vladimir B. Zaytsevc and Irina I. Ivanovaa,b* \\
a A.V. Topchiev Institute of Petrochemical Synthesis, Lenensky avenue, bld. 29, 119991, Moscow, Russia. \\
b Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 11999,1 Moscow, Russia. \\
c Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 11999,1 Moscow, Russia. \\
*Corresponding author: Tel.: +7(495)939-3570; Fax: +7(495)939-3570; E-mail address: iiivanova@phys.chem.msu.ru.
Fig. S1. XRD pattern of SAPO-34 catalyst.

Fig. S2. SEM image of SAPO-34 catalyst.
Fig. S3. Nitrogen adsorption/desorption isotherm of SAPO-34 catalyst.

Fig. S4. TPD NH$_3$ profile of SAPO-34 catalyst.
Fig. S5. Kinetics of “light” and “heavy” coke deposition under SLR (a) and FBR (b) conditions.

Fig. S6. FTIR spectra of DTBP adsorbed over fresh SAPO-34 sample (a), over SiO₂ modified sample (b). Bands at 1615 and 1530 cm⁻¹ correspond to protonated DTBP.