Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature

selective oxidation of methane to syngas

Yuhui Hou,^a Sho Ogasawara,^{a,b} Atsushi Fukuoka,^a Hirokazu Kobayashi^a*

^aInstitute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.

^bDepartment of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.

E-mail: kobayashi.hi@cat.hokudai.ac.jp

Fig. S1 Reaction setup.

Fig. S2 Catalytic performance over Rh/zeolite catalysts prepared by ion exchange method. Conditions: 450 °C, $CH_4/O_2/He = 50/4/46$, $SV = 6000 \text{ mL g}^{-1}\text{h}^{-1}$.

Fig. S3 XRD patterns of the samples

Fig. S4 N_2 adsorption-desorption isotherms at -196 °C for different samples.

Fig. S5 TEM images of Rh/MOR-IE (A) and Rh/MOR-IM (B).

Fig. S6 EDX spectrum of Rh/MOR-IE at bright dots (008). *Cu and C come from the holey carbon supported copper grid.

Fig. S7 EDX spectrum of Rh/MOR-IE at dark part. *Cu and C come from the holey carbon supported copper grid.

Fig. S8 EDX spectrum of Rh/MOR-IM at bright dots (003). *Cu and C come from the holey carbon supported copper grid.

Fig. S9 Durability test of Rh/MOR-IE under non-equilibrium condition.

Conditions: 450 °C, CH₄/O₂/He = 50/4/46, SV = 60,000 mL g⁻¹ h⁻¹.

Fig. S10 Time course of POM by Rh/MOR-IE (A) and Rh/MOR-IM (B) at 600 °C, $CH_4/O_2/He = 50/4/46$, and $SV = 6000 \text{ mL g}^{-1} \text{ h}^{-1}$. Green star: CO selectivity; black square: conversion; red circle: CO yield; blue triangle: CO_2 yield.

Fig. S11 NH₃-TPD for Rh/MOR-IE (A) and Rh/NaMOR-IE (B).

Catalysts	CO/Rh ratio
Rh/MOR-IE	1.2
Rh/MOR-IM	0.61
Rh/ZSM-IE	1.2
Rh/Beta-IE	1.2
Rh/SiO ₂ -IM	0.51
Rh/Al ₂ O ₃ -IM	0.46

Table S1 Comparison of adsorbed amount of CO on Rh catalysts

Table S2 Thermodynamic data for outlet gas in the POM.

	$\Delta H_{\rm f}^{\circ}(298)^{\rm a}$	<i>S</i> °(298) ^b	$C_{\rm p}~/{ m J~K^{-1}~mo}$	$C_{\rm p}$ /J K ⁻¹ mol ⁻¹ = $a + 10^{-3}bT + 10^{-6}cT^2 + 10^{-9}dT^3 + 10^{6}eT^{-2}$					
	/kJ mol ⁻¹	$/J K^{-1} mol^{-1}$	а	<i>b</i> /K ⁻¹	<i>c</i> /K ⁻²	d / K^{-3}	<i>e</i> /K ²		
CH ₄	-74.4	186.3	-0.703029	108.477	-42.5216	5.86279	0.678565		
CO	-110.5	197.7	25.5676	6.09613	4.05466	-2.67130	0.131021		
$\rm CO_2$	-393.5	213.8	24.9974	55.1870	-33.6914	7.94839	-0.136638		
H_{2}	0	130.7	33.0662	-11.3634	11.4328	-2.77287	-0.158558		
H ₂ O	-241.8	188.8	30.0920	6.83251	6.79344	-2.53448	0.082139		

$${}^{a}\Delta H^{\circ}(T) = \Delta H^{\circ}(298) + \int_{298}^{T} C_{p} dT \quad (S1). \quad {}^{b}S^{\circ}(T) = S^{\circ}(298) + \int_{298}^{T} \frac{C_{p} dT}{T} \quad (S2).$$

CH ₄ /O ₂ /He(N ₂)	Temp. /°C	Conv. CH ₄ /%	Sel. CO/%	H ₂ /CO
50/4/46	450	10.2	68.1	2.5
50/4/46	600	16.5	97.4	2.1
36/18/46	450	40.2	65.2	2.0
3.33/1.67/95	600	85.0	96.0	2.0

Table S3 Equilibrium data for POM under different conditions

Table S4 Equilibrium data for reforming and reverse WGS under different conditions

Conditions	Temp. /°C	Conv. /%	Sel. CO/%
Reforming ^a	450	58°	91.7
Reforming ^a	600	93°	99.7
Reverse WGS ^b	450	53 ^d	8.0
Reverse WGS ^b	600	78 ^d	87

 ${}^{a}CH_{4} + H_{2}O \Leftrightarrow CO + 3H_{2}, CH_{4}/He/H_{2}O = 47/49/4. \ {}^{b}CO_{2} + H_{2} \Leftrightarrow CO + H_{2}O, CO_{2}/H_{2}/He = 2/12/86.$

^cConversion of CH₄ based on the amount of H₂O. ^dConversion of CO₂ = $(1 - n_{\text{CO2-out}}/n_{\text{CO2-in}}) \times 100\%$.

Table S5 Catalytic performance of different samples in the POM at CH₄/O₂ of 12.5.

Catalysts	Temp. /°C	$SV / mL g^{-1} h^{-1}$	Conv. (CH ₄) /%	Yield (CO) /%	Sel. (CO) /%	H ₂ /CO
Rh/MOR-IE	450	6000	9.7	6.2	64	2.4
Rh/MOR-IM	450	6000	6.4	3.3	51	2.3
Rh/SiO ₂ -IM	450	6000	7.9	2.6	33	n.d.
Rh/Al ₂ O ₃ -IM	450	6000	8.2	2.7	34	n.d.
MOR	450	6000	0.01	< 0.002	<20	n.d.

Reaction conditions: 450 °C, total flow rate: 20 mL min⁻¹, $CH_4/O_2/N_2$ (or He) = 50/4/46, 0.1 MPa. n.d.: not determined.

Catalyst	SV /mL	CH ₄ /O ₂ /	Conv.	Sel.	TOF for	TON	Ref.
	$g^{-1} h^{-1}$	inert gas	$\left(\mathrm{CH}_4\right)/\%$	(CO) /%	CO /h-1		
0.25 wt% Rh/MOR-	1.2×10^{6}	3.33/1.67/95	84	91	52,000	2.6×10 ⁶ at 50 h	This
IE							work
0.5 wt%	1.2×10 ⁶	3.33/1.67/95	77	70	18,000	No data	[S1]
$Rh/Ce_{0.16}Zr_{0.84}O_{2}$							
1 wt%	2.5×10 ⁵	28.6/14.3/57.1	50	52	7,800	78,000 at 10 h	[S2]
$Rh/Ce_{0.5}Zr_{0.5}O_2$							
$0.5 \text{ wt\% Rh/ZrO}_2$	1.1×10 ⁶	4.0/2.24/93.76	42	38	5,800	No data	[S3]
0.19 wt% Rh/t-ZrO ₂	9.0×10 ⁵	2.0/1.0/97	55	78	17,000	No data	[S4]
3.1 wt% Rh/CeO ₂	6.0×10 ⁴	5.0/2.5/92.5	84	78	270	No data	[85]
$0.5 \text{ wt\% Rh/}\alpha\text{-Al}_2O_3$	1.1×10 ⁶	4.0/2.24/93.76	73	67	18,000	No data	[S3]
$1 \text{ wt\% Rh/\alpha-Al}_2O_3$	2.5×10 ⁵	28.6/14.3/57.1	62	68	13,000	1.3×10 ⁵ at 10 h	[S2]

Table S6 Performance of POM catalysts at 873 K

When the literature reported multiple catalysts and conditions with detailed results, we chose similar one to that of our case (0.25 wt% Rh, SV = 1.2×10^6 mL h⁻¹ g⁻¹, CH₄/O₂/He = 3.33/1.67/95).

Table S7 Catalytic performance of regenerated Rh/MOR-IE

Catalyst	Conv. CH ₄ /%	Yield CO/%	Sel. CO/%
Fresh	16.4	15.5	94.7
Regenerated ^a	16.5	15.7	95.1

Conditions: 600 °C, total flow rate: 20 mL min⁻¹, SV = 6000 mL h⁻¹ g⁻¹, 0.1 MPa, CH₄/O₂/N₂ (or He) =

50/4/46.

^aCalcined at 450 °C for 1 h with O₂ after using Rh/MOR-IE for the POM at 650 °C.

Pretreatment	Conv. CH ₄ /%	Yield CO/%	Sel. CO/%
No treatment	9.7	6.2	64.0
H_2 reduction at 450 °C for 1 h	10.1	6.5	64.4

Table S8 Catalytic performance over Rh/MOR-IE with different pretreatment

Conditions: 450 °C, total flow rate: 20 mL min⁻¹, SV = 6000 mL h⁻¹ g⁻¹, 0.1 MPa, CH₄/O₂/N₂ (or He) =

50/4/46.

Table S9	Average	coordination	number	(CN)	of surface	Rh

Rh metal species	CN
Rh ₈ cluster	3.8
Rh ₁₃ cluster	5.0
Corner site on bulk Rh	5.5
Edge site on bulk Rh	7.0
Terrace site on bulk Rh	9.0

Supplementary references

- S1 A. Scarabello, D. Dalle Nogare, P. Canu, and R. Lanza, *Appl. Catal. B*, 2015, **174-175**, 308-322.
- S2 A. J. Santis-Alvarez, R. Büchel, N. Hild, W. J. Stark and D. Poulikakos, *Appl. Catal. A*, 2014, 469, 275-283.
- S3 T. Bruno, A. Beretta, G. Groppi, M. Roderi and P. Forzatti, Catal. Today, 2005, 99, 89-98.
- S4 C. Campa, M. G. Ferraris, D. Gazzoli, I. Pettiti and D. Pietrogiacomi, *Appl. Catal. B*, 2013, **142-143**, 423-431.
- S5 Y. Zhu, S. Zhang, J. J. Shan, L. Nguyen, S. Zhan, X. Gu and F. Tao, ACS Catal., 2013, 3, 2627-2639.