Supplementary Information for

Simple low cost porphyrinic photosensitizers for large scale chemoselective oxidation of sulfides to sulfoxides under green conditions: Targeted protonation of porphyrins

Aida G. Mojarrad and Saeed Zakavi*

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail: zakavi@iasbs.ac.ir

Contents:

S1a: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₂TPP.

S1b: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(CF₃COO)₂.

S1c: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(Cl₂CHCOO)₂.

S1d: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(ClO₄)₂.

S1e: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(HSO₄)₂.

S2: UV-Vis spectra of H₂TPP and diacid species with CF₃COOH, Cl₂CHCOOH, HClO₄ and H₂SO₄.

S3 (a,b): ¹H NMR and ¹³C NMR spectra of H₂TPP.

S4 (a,b): ¹H NMR and ¹³C NMR spectra of H₄TPP(CF₃COO)₂.

S5 (a,b): ¹H NMR and ¹³C NMR spectra of H₄TPP(Cl₂CHCOO)₂.

S6 (a,b): ¹H NMR and ¹³C NMR spectra of H_4 TPP(ClO₄)₂.

S7 (a,b): ¹H NMR and ¹³C NMR spectra of H₄TPP(HSO₄)₂.

S8a: ¹H NMR, ¹³C NMR spectral data for Methyl(phenyl)sulfane **(1a)**.

S8b: ¹H NMR, ¹³C NMR spectral data for Ethyl(phenyl)sulfane (2a).

S8c: ¹H NMR, ¹³C NMR spectral data for Butyl(phenyl)sulfane **(3a)**.

S8d: ¹H NMR, ¹³C NMR spectral data for Methyl(p-tolyl)sulfane (5a).

S8e: ¹H NMR, ¹³C NMR spectral data for Ethyl(p-tolyl)sulfane **(6a)**.

S8f: ¹H NMR, ¹³C NMR spectral data for Butyl(p-tolyl)sulfane (7a).

S9 (a,b): ¹H NMR, ¹³C NMR spectra for Methyl(phenyl)sulfane (1a).

S10 (a,b): ¹H NMR, ¹³C NMR spectra for Ethyl(phenyl)sulfane (2a).

S11 (a,b): ¹H NMR, ¹³C NMR spectra for Butyl(phenyl)sulfane (3a).

S12 (a,b): ¹H NMR, ¹³C NMR spectra for Methyl(p-tolyl)sulfane (5a).

S13 (a,b): ¹H NMR, ¹³C NMR spectra for Ethyl(p-tolyl)sulfane **(6a)**.

S14 (a,b): ¹H NMR, ¹³C NMR spectra for Butyl(p-tolyl)sulfane (7a).

\$15: Experimental setup for the photooxidation reactions performed under sunlight irradiation.

S16 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Methylsulfinyl)benzene **(1b)**.

S17 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfinyl)benzene **(2b)**.

S18 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfinyl)benzene (3b).

S19 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfonyl)benzene (3c).

S20 (a,b): ¹H NMR, ¹³C NMR spectra for 3-(Allylsulfinyl)prop-1-ene (4b).

S21 (a,b): ¹H NMR, ¹³C NMR spectra for 1-methyl-4-(Methylsulfinyl)benzene (5b).

S22 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfinyl)-4-methylbenzene **(6b)**.

S23 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfonyl)-4-methylbenzene **(6c)**.

S24 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfinyl)-4-methylbenzene (7b).

S25 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfonyl)-4-methylbenzene (7c).

S26: The photostability of DPBF in the absence of ${}^{1}O_{2}$ under irradiation of a 10 W red LED lamp.

S27: Kinetic curves for the decay of DPBF upon oxidation with ${}^{1}O_{2}$ in the presence of H₂TPP and the corresponding diacids.

S28: The changes in the absorption spectrum of DPBF upon oxidation with ${}^{1}O_{2}$ in the presence of H₂TPP and the corresponding diacids.

S1a: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₂TPP.

H₂TPP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H_m and 4H_p, m), 8.26-8.27 (8H_o, d), 8.90 (8H_β, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 120.18 (C_{meso}), 142.20 (C₁), 134.60 (C₂, C₆), 126.73 (C₃, C₅), 127.75 (C₄), 131.5 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

S1b: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(CF₃COO)₂.

H₄**TPP(CF**₃**COO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.276 (4H, br, s, NH), 7.99-8.043 (8H_m and 4H_p, m), 8.616-8.652 (8H_o, m), 8.616-8.652 (8H_β, m); ¹³C NMR (400MHz, CDCl₃, TMS), δ/ppm: 122.77 (C_{meso}), 139.90 (C₁), 138.52 (C₂, C₆), 128.31 (C₃, C₅), 130.01 (C₄), 145.72 (C_α), 128.31 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 437 (5.83), 600 (4.46), 652 (4.93).

S1c: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(Cl₂CHCOO)₂.

H₄**TPP(Cl**₂**CHCOO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.99-8.07 (8H_m and 4H_p, m), 8.64-8.66 (8H_o, m), 8.71 (8H_β, s), -0.41 (4H, br, s, NH); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 123.16 (C_{meso}), 139.57 (C₁), 138.62 (C₂, C₆), 128.96 (C₃, C₅), 130.34 (C₄), 145.78 (C_α), 128.56 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 439 (4.59), 600 (3.30), 652 (3.73).

S1d: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(ClO₄)₂.

H₄TPP(ClO₄)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 8.021-8.098 (8H_m and 4H_p, m), 8.65-8.67 (8H_o, d), 8.838 (8H_β, s), no signal was observed for the NH protons at 20 0 C.; ¹³C NMR (400MHz, CDCl₃,

TMS), δ /ppm: 123.38 (C_{meso}), 139.50 (C₁), 138.72 (C₂, C₆), 128.56 (C₃, C₅), 130.46 (C₄), 146.21 (C_a), 129.76(C_β); UV-vis in CH₂Cl₂, λ_{max} /nm(logε): 439 (4.64), 600 (3.36), 655 (3.79).

S1e: ¹H NMR, ¹³C NMR and UV-Vis spectral data for H₄TPP(HSO₄)₂.

H₄TPP(HSO₄)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.984-8.074 (8H_m and 4H_p, m), 8.626-8.663 (8H_o, m), 8.626-8.663 (8H_β, m), no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (400MHz, CDCl₃, TMS), δ/ppm: 122.63 (C_{meso}), 139.93 (C₁), 139.05 (C₂, C₆), 128.12 (C₃, C₅), 130.01 (C₄), 146.05 (C_α), 128.40(C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 445 (5.70), 611 (3.43), 662 (3.77).

S2: UV-Vis spectra of H₂TPP and diacid species with CF₃COOH, Cl₂CHCOOH, HClO₄ and H₂SO₄.

S3 (a,b): ¹H NMR and ¹³C NMR spectra of H₂TPP.

S4 (a,b): ¹H NMR and ¹³C NMR spectra of $H_4TPP(CF_3COO)_2$.

S6 (a,b): ¹H NMR and ¹³C NMR spectra of H₄TPP(ClO₄)₂.

S7 (a,b): ¹H NMR and ¹³C NMR spectra of $H_4TPP(HSO_4)_2$.

S8a: ¹H NMR, ¹³C NMR spectral data for Methyl(phenyl)sulfane (1a).

Methyl(phenyl)sulfane (1a).¹H NMR (400 MHz, chloroform-*d*): δ = 2.52 ppm (-CH₃, 3H, s), 7.16-7.18 (H_o, 2H, m), 7.18-7.20 (H_m, 2H, m), 7.31-7.33 (H_p, t); ¹³C NMR (400 MHz, chloroform-*d*): δ = 16.08 ppm (-CH₃), 138.26 (-CS-), 126.75 (C_o), 128.56 (C_m), 125.13 (C_p).

S8b: ¹H NMR, ¹³C NMR spectral data for Ethyl(phenyl)sulfane (2a).

Ethyl(phenyl)sulfane (2a). ¹H NMR (400 MHz, chloroform-*d*): δ=1.33-1.37 ppm (-CH₃, 3H, t), 2.96-3.00 (-CH₂, 2H, quartet), 7.18-7.19 (H_p, t), 7.32-7.38 (H_o, 2H, m), 7.21-7.22 (H_m, quartet); ¹³C NMR (400 MHz, chloroform-*d*): δ=14.47 ppm (-CH₃), 27.77 (-CH₂-), 136.66 (-CS-), 125.79 (C_p), 129.04 (C_o), 128.82 (C_m).

S8c: ¹H NMR, ¹³C NMR spectral data for Butyl(phenyl)sulfane (3a).

Butyl(phenyl)sulfane (3a). ¹H NMR (400 MHz, chloroform-*d*): δ =0.95-0.98 ppm (-CH₃, 3H, t), 1.45-1.54 (-CH₂CH₃, 2H, m), 1.64-1.72 (-CH₂C₂H₅, 2H, quintet), 2.95-2.98 (-CH₂S₋₇ 2H, t), 7.32 (H_m, 2H, quartet), 7.36-7.38 (H_o, 2H, d), 7.18-7.22 (H_p, t); ¹³C NMR (400 MHz, chloroform-*d*): δ =13.62 ppm (-CH₃), 21.91 (-CH₂CH₃), 31.25 (-CH₂C₂H₅), 33.28 (-CH₂S₋₇), 137.02 (-CS₋₇), 125.65 (C_p), 128.84-128.86 (C_m, C_o).

S8d: ¹H NMR, ¹³C NMR spectral data for Methyl(p-tolyl)sulfane (5a).

 $\begin{array}{l} \textbf{Methyl(p-tolyl)sulfane (5a). }^{1}H \ \text{NMR} \ (400 \ \text{MHz}, \ chloroform-d): } \delta = 2.51 \ \text{ppm} \ (\text{CH}_3\text{S} \ , \ 3\text{H}, \ s), \\ 2.36 \ (\text{CH}_3\text{Ph} \ , \ 3\text{H}, \ s), \ 7.14-7.16 \ (\text{H}_m, \ 2\text{H}, \ d), \ 7.22-7.24 \ (\text{H}_o, \ 2\text{H}, \ d); \ ^{13}\text{C} \ \text{NMR} \ (400 \ \text{MHz}, \ chloroform-d): \\ \delta = 20.92 \ \text{ppm} \ (\text{CH}_3\text{Ph} \ , \ 16.57 \ (\text{CH}_3\text{S} \), \ 135.09 \ (\ \text{CS} \), \ 127.32 \ (\text{C}_o), \ 129.62 \ (\text{C}_m), \ 134.72 \ (\text{C}_p). \end{array}$

S8e: ¹H NMR, ¹³C NMR spectral data for Ethyl(p-tolyl)sulfane **(6a)**.

Ethyl(p-tolyl)sulfane (6a). ¹H NMR (400 MHz, chloroform-*d*): δ =1.31-1.35 ppm (CH₃CH₂, 3H, t), 2.36 (-CH₃Ph, 3H, s), 2.90-2.97 (-CH₂S-, 2H, quartet), 7.29-7.31 (H_o, 2H, d), 7.13-7.15 (H_m, 2H, d); ¹³C NMR (400 MHz, chloroform-*d*): δ =14.52 ppm (CH₃CH₂-), 20.96 (CH₃Ph-), 28.36 (-CH₂S), 132.72 (-CS), 136.0 (C_p), 129.64 (C_o), 129.99 (C_m).

S8f: ¹H NMR, ¹³C NMR spectral data for Butyl(p-tolyl)sulfane (7a).

Butyl(p-tolyl)sulfane (7a). ¹H NMR (400 MHz, chloroform-*d*): δ=0.94-0.98 ppm (CH₃CH₂ , 3H, t), 1.44-1.53 (-CH₂CH₃, 2H, m), 1.62-1.69 (-CH₂C₂H₅, 2H, m), 2.36 (CH₃Ph , 3H, s), 2.91-2.94 (-CH₂S , 2H, t), 7.13-7.15 (H_m, 2H, d), 7.28-7.30 (H_o, 2H, d); ¹³C NMR (400 MHz, chloroform-*d*): δ=13.73 ppm (CH₃CH₂-), 21.01 (-CH₂CH₃), 22.0 (CH₃Ph-), 31.37 (-CH₂C₂H₅), 34.06 (-CH₂S-), 133.18 (-CS-), 135.86 (C_p), 129.79 (C_m), 129.62 (C_o).

S9 (a,b): ¹H NMR, ¹³C NMR spectra for Methyl(phenyl)sulfane (1a).

S10 (a,b): ¹H NMR, ¹³C NMR spectra for Ethyl(phenyl)sulfane **(2a)**.

S11 (a,b): ¹H NMR, ¹³C NMR spectra for Butyl(phenyl)sulfane (3a).

S12 (a,b): ¹H NMR, ¹³C NMR spectra for Methyl(p-tolyl)sulfane (5a).

S13 (a,b): ¹H NMR, ¹³C NMR spectra for Ethyl(p-tolyl)sulfane (6a).

S14 (a,b): ¹H NMR, ¹³C NMR spectra for Butyl(p-tolyl)sulfane (7a).

S15: Experimental setup for the photooxidation reactions performed under sunlight irradiation.

S17 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfinyl)benzene **(2b)**.

S18 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfinyl)benzene **(3b)**.

S19 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfonyl)benzene **(3c)**.

S20 (a,b): ¹H NMR, ¹³C NMR spectra for 3-(Allylsulfinyl)prop-1-ene **(4b)**.

S21 (a,b): ¹H NMR, ¹³C NMR spectra for 1-methyl-4-(Methylsulfinyl)benzene (5b).

S22 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfinyl)-4-methylbenzene (6b).

S23 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Ethylsulfonyl)-4-methylbenzene **(6c)**.

S24 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfinyl)-4-methylbenzene (7b).

S25 (a,b): ¹H NMR, ¹³C NMR spectra for 1-(Butylsulfonyl)-4-methylbenzene (7c).

S26: The photostability of DPBF in the absence of ${}^{1}O_{2}$ under irradiation of a 10 W red LED lamp.

S27: Kinetic curves of DPBF decay upon oxidation with ${}^{1}O_{2}$ in the presence of H₂TPP and the corresponding diacids.

S28: The absorption spectrum of DPBF decay upon oxidation with ${}^{1}O_{2}$ in the presence of H₂TPP and the corresponding diacids.