Dimensional Heterostructure of 1D CdS/ 2D ZnIn$_2$S$_4$
Composited with 2D Graphene: Designed Synthesis and Superior Photocatalytic Performance

Qingyong Tiana, Wei Wu$^{a, b,*}$, Jun Liua, Zhaohui Wuc, Weijing Yaoa, Jin Dinga,
Changzhong Jianga,*

aSchool of Physics and Technology and School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.

bSuzhou Research Institute of Wuhan University, Suzhou 215000, P. R. China.

cDepartment of Biological Engineering and Environment Science Department, Changsha University, Changsha 410005, P. R. China

Figure S1 The (a) SEM image of pure ZnIn$_2$S$_4$ nanosheets.

*To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail: weiwu@whu.edu.cn (W. Wu) and czjiang@whu.edu.cn (C. Jiang).
Figure S2 EDX spectrum of CdS (green) nanowires and CdS/ZnIn$_2$S$_4$ (red) helical DHS.

Figure S3 UV-vis absorption spectra of CdS nanowires, CdS/ZnIn$_2$S$_4$ helical DHS and CdS/ZnIn$_2$S$_4$/RGO composites.
Figure S4 Degradability of 4 cycling runs for photocatalytic degradation of MG in the presence of (a) CdS nanowires and (b) CdS/ZnIn$_2$S$_4$ helical DHS photocatalysts.

Figure S5 (a) Typical plot of $(\alpha hv)^2$ versus photon energy (hv) for the CdS nanowires, ZnIn$_2$S$_4$ nanosheets, CdS/ZnIn$_2$S$_4$ helical DHS and CdS/ZnIn$_2$S$_4$/RGO composites, (b) XPS valence band spectra for CdS nanowires and ZnIn$_2$S$_4$ nanosheets.