Supporting Information

Noble-metal-free MoS$_2$ nanosheets modified-InVO$_4$ heterostructures for enhanced visible-light-driven photocatalytic H$_2$ production

Zhe Kong,a Yong-Jun Yuan,a* Daqin Chen,a* Gaoliang Fang,a Yan Yang,a Shuhui Yanga and Dapeng Caob

a College of Materials and Environmental Engineering, Hangzhou Dianzi University
Hangzhou, Zhejiang 310018, P.R. China.

b College of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, P.R.China.

E-mail: yjyuan@hdu.edu.cn; dqchen@hdu.edu.cn
Experimental section

General Procedures: Indium chloride (InCl₃), ethanolamine, ammonium vanadate (NH₄VO₃), sodium molybdate (Na₂MoO₄·2H₂O), thiourea, ethanol and methanol were obtained from Mike Chemical Reagent Co., Ltd Cdl. All reagents were used as received without further purification.

Characterization: Powder X-ray diffraction (XRD) patterns were performed on a Rigaku D/Max-2550pc powder diffractometer equipped with Cu-Kα (λ = 0.15406 nm) radiation in the 2θ ranging from 10° to 80° with a scan rate of 10° per minute. The optical properties of the products were characterized by a Varian Cary 500 UV-vis spectrophotometer, in which BaSO₄ was used as the internal reflectance standard. X-ray photoelectron spectroscopy (XPS) measurements were performed by using a VG ESCALAB MKII XPS system with Al Kα X-ray source and a charge neutralizer. The morphology of the photocatalysts was determined by using a field-emission scanning electron microscopy (FE-SEM, ultra55), high-resolution transmission electron microscopy (HR-TEM, JEM 2010) with an accelerating voltage of 200 kV. The SEM and TEM samples were obtained by depositing a drop of diluted suspensions in ethanol on a silicon chip and carbon-film-coated copper grid, respectively. Raman spectra of products were recorded at room temperature using Raman spectrometer (J-Y T64000) in the backscattering geometry with 514.5 nm wavelength incident laser light.

Preparation of InVO₄

In a typical synthesis of InVO₄, 1 mmol of InCl₃ and 1 mmol NH₄VO₃ were dissolved in 60 mL of distilled water containing 10 mM ethanolamine, which was then transferred into a 100 mL Teflon-lined autoclave and kept at 150 °C for 16 h. After that,
the green precipitate was collected by centrifugation, washed two times with distilled water and ethanol, and then dried in an oven at 60 °C for 12 h.

Preparation of MoS$_2$/InVO$_4$ photocatalysts.

In a typical synthesis of MoS$_2$/InVO$_4$ composite photocatalyst, 500 mg of the prepared InVO$_4$ was sonicated thoroughly in 50 ml aqueous solution containing 7.5 mg Na$_2$MoO$_4$•2H$_2$O and 15 mg thiourea. Next, the heterogeneous solution was transferred into a 100 mL Teflon-lined stainless steel autoclave and kept at 200 °C for 24 h. After the reaction solution was cooled to room temperature, the grey precipitate was separated by centrifugation, washed three times with absolute ethanol, and then dried in an oven at 60 °C to obtain 1 wt% MoS$_2$/InVO$_4$ sample. In order to investigate the effect of MoS$_2$ content in the MoS$_2$/InVO$_4$ composite photocatalysts on the photocatalytic H$_2$ evolution activity, the weight percentages of MoS$_2$ to InVO$_4$ were varied from 0 to 5 (0, 1, 2, 3, 4 and 5 wt%) by varying the weight of Na$_2$MoO$_4$•2H$_2$O and thiourea (2 equiv of Na$_2$MoO$_4$•2H$_2$O), the resulting samples were annealed at 400 °C for 3 h under nitrogen atmosphere.

Photocatalytic H$_2$ production.

The photocatalytic H$_2$-evolution experiments were performed in a 350 mL Pyrex flask, which was connected to a closed gas-circulation lation glass system. H$_2$ production experiments experiment was performed by dispersing 100 mg powder photocatalyst in 250 ml aqueous solution containing methanol (20%, V/V) as sacrificial electron donor. After the solution was degassed to remove air completely, the mixture solution was irradiated by a 300 W Xe lamp equipped with a cut-off filter (λ > 420 nm) with gentle magnetic stirring. The evolving H$_2$ were periodically detected in situ on a gas
chromatograph (Jiedao GC1690, TCD, argon as a carrier gas and MS-5A molecular sieve column). The standard errors in the photocatalytic H$_2$ evolution performance for all photocatalytic experiments were less than 2.0%.

Fig. S1 SEM image of pure InVO$_4$ sample.

Fig. S2 TEM image of pure InVO$_4$ sample.

Fig. S3 TEM image of pure InVO$_4$ sample.
Fig. S4 X-ray diffraction patterns for 3 wt% MoS\textsubscript{2}/InVO\textsubscript{4} photocatalyst before and after visible light irradiation.