Supplementary Material

Selenium makes the difference: Protonation of [FeFe]-hydrogenase mimics with diselenolato ligands

Hassan Abul-Futouh,^a Mohammad El-khateeb,^b Helmar Görls,^a Khalil J. Asali^b and Wolfgang Weigand^{a*}

^a Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany Email: wolfgang.weigand@uni-jena.de

^b Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan. Email: kateeb@just.edu.jo

Figure S1. A) ¹H NMR spectrum (CD₂Cl₂) of complex **4** without HBF₄·Et₂O. **B**) ¹H NMR spectrum (CD₂Cl₂) of complex **4** with (100 equiv.) HBF₄·Et₂O. (•) peaks of Et₂O in the acid.

Figure S2. The ¹H, ⁷⁷Se{H} HMBC NMR spectrum of 4μ H⁺ in CD₂Cl₂.

Figure S3. The high field ¹H NMR spectrum (CD₂Cl₂) of complexes 7 (blue), 8 (green) and 9 (red) with 100 equiv. HBF₄·Et₂O.

Figure S4. ¹H NMR spectrum (CD₂Cl₂) of complex **4** with 100 equiv. CF₃CO₂H (top) and ⁷⁷Se{H} NMR spectrum (CD₂Cl₂) of complex **4** with 100 equiv. CF₃CO₂H (bottom). ($\mathbf{\nabla}$) Signals for the new CH₂ (2.33 ppm) and CH₃ (0.59 ppm) moieties. (•) Signals for the CH₂ and CH₃ in the parent complex.

Figure S5. The scan rates dependence of the current function of the primary reduction peaks of (a) 0.87 mM complex **3** and (b) 1.0 mM complex **4** in CH₂Cl₂-[*n*-Bu₄N][PF₄] (0.1 M) solutions. Glassy carbon electrode ($A = 0.0206 \text{ cm}^2$). The dashed line represents the current function expected for a one electron process assuming $D \approx 9 \times 10^{-6} \text{ cm}^2 \text{ S}^{-1}$, a value calculated for various [FeFe]-Hydrogenase models.

The current function $(I_{pc}/C.v^{1/2})$ is given by the equation $I_{pc}/C.v^{1/2} = (2.69 \text{ x} 10^5) \cdot A \cdot D^{1/2} \cdot n^{3/2}$, where I_{pc} is the cathodic peak current in μA , *C* is the bulk concentration of the complex in mM, *A* is the surface area of the electrode in cm², $D \approx 9 \text{ x} 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ and *n* is the number of electrons responsible for the reduction event. In general, when the reduction process does not have any chemical route (simple E mechanism, n = 1), the current function of this reduction process should remain constant at all scan rates since $2.69 \times 10^5 \cdot A \cdot D^{1/2} \cdot n^{3/2}$ is constant. In contrast, when an ECE mechanism (n = 2) in which a chemical process takes place, the current function of this reduction process does not have any chemical of this reduction process decreases significantly toward that expected for a one electron as the scan rates increase. This means, at higher scan rates there is no enough time for such a chemical process to occur and thus the second electron transfer will not take place (i.e. conversion the mechanism from ECE to simple E process).

Figure S6. Cyclic voltammogam of 1 mM complexes $[Fe_2(CO)_6{\mu-(SCH_2)_2SnMe_2}]$, **4S**, (black line) and **4** (red line) in CH₂Cl₂- $[n-Bu_4N]$ [PF₄] (0.1 M) solution at 0.2 V s⁻¹ scan rate. The arrows indicate the scan direction. The potentials *E* are given in V and referenced to the Fc⁺/Fc couple.

Figure S7. Cyclic voltammogam of various concentration of AcOH in CH_2Cl_2 -[*n*-Bu₄N][PF₄] (0.1 M) solution at 0.2 V s⁻¹ scan rate in the absence of catalyst (mdel complexes). The arrows indicate the scan direction. The potentials *E* are given in V and referenced to the Fc⁺/Fc couple.

