SUPPLEMENTARY INFORMATION

A dinuclear biomimetic Cu complex derived from L-histidine: Synthesis and stereoselective oxidations

Maria L. Perrone, Elena Salvadeo, Eliana Lo Presti, Luca Pasotti, Enrico Monzani, Laura Santagostini, Luigi Casella

Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
Noxamet Srl, Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
Dipartimento di Chimica, Università di Milano, 20133 Milano, Italy

Derivation of the kinetic equation for a catalytic reaction requiring the binding of two substrate molecules.

The catalytic oxidations of norepinephrine enantiomers by \([\text{Cu}_2(\text{EHI})]^{4+}\) show a substrate sigmoidal dependence suggesting the binding of two substrate molecules to the catalyst in order to observe catalysis. The reaction scheme describing the catalytic behavior is as follow:

\[
C + 2S \overset{\beta_2}{\longrightarrow} \text{CS}_2 \overset{k_{\text{cat}}}{\longrightarrow} \text{C} + \text{S} + \text{P}
\]

where C is the catalyst, S is norepinephrine, \(\text{CS}_2\) is the catalyst bound to two substrate molecules and P is the product of the reaction.

Assuming that:

a) The binding step I fast with respect to the turnover cycle rate (as shown by the fast binding observed in the binding studies with \([\text{Cu}_2(\text{EHI})]^{4+}\) and considering the slow reaction rates, i.e. moderate \(k_{\text{cat}}\) values)

b) The binding of two substrate molecules is needed to perform the reaction (i.e., the CS species is catalytically not efficient)
c) Only a minor fraction of the complex with bound only one substrate molecule accumulates during turnover (i.e., $[CS]<<[C]+[CS_2]$)

According to point a, the binding of the two substrate molecules occurs as a pre-equilibrium, allowing the use of the binding constant β_2 (equation 1), together with the mass balance on the catalyst (equation 2), to obtain the species concentration during turnover

$$C + 2S \xrightarrow{\beta_2} CS_2 \quad \beta_2 = \frac{[CS_2]}{[C_0] \cdot [S]^2} \quad (1)$$

$$[C_0] = [C] + [CS_2] \quad (2)$$

where $[C_0]$ is the total (free plus substrate bound) concentrations of the catalyst

$[CS_2]$ can be obtained from equation 1, $[CS_2] = \beta_2 \cdot [C] \cdot [S]^2$

The substitution of $[CS_2]$ in equation 2 gives the free (not bound) catalyst concentration:

$$[C] = \frac{[C_0]}{1 + \beta_2 \cdot [S]^2} \quad (3)$$

And then that of the CS_2 species:

$$[CS_2] = \frac{[C_0] \cdot \beta_2 \cdot [S]^2}{1 + \beta_2 \cdot [S]^2} \quad (4)$$

The reaction rate depends on $[CS_2]$ through equation 5:

$$r = k_{cat} \cdot [CS_2] \quad (5)$$

The rate equation is obtained by combining equations 4 and 5:

$$r = \frac{k_{cat} \cdot [C_0] \cdot \beta_2 \cdot [S]^2}{1 + \beta_2 \cdot [S]^2} \quad (6)$$

and

$$\frac{r}{[C_0]} = \frac{k_{cat} \cdot \beta_2 \cdot [S]^2}{1 + \beta_2 \cdot [S]^2} = \frac{k_{cat} \cdot [S]^2}{1/\beta_2 + [S]^2} = \frac{k_{cat} \cdot [S]^2}{K' + [S]^2} \quad (7)$$

where $K' = 1/\beta_2$
Derivation of the kinetic equation to interpret the monomeric-dimeric equilibrium of [Cu$_2$(EHI)]$^{4+}$.

In order to model this peculiar behavior, the kinetic equations were appropriately derived with the assumption that, in substrate-saturating conditions, the oxidation rate depends only on complex concentration. We also assume that the complex exists in two forms in dynamic equilibrium, a monomeric and a dimeric species:

$$2C \rightleftharpoons C_2 \quad \text{ruled by } K_b = [C_2]/[C]^2$$

Oxidation rate depends from both [C] and [C$_2$]

$$r = k_1[C] + k_2[C_2]$$

Considering the mass equation:

$$[C_0] = [C] + 2K_b[C]^2$$

appropriate substitution leads to the final equation, used for the interpolation:

$$r = k_1 \left(-1 + \frac{1 + 8 \times K_b \times [C_0]}{4K_b} \right) + k_2K_b \left(-1 + \frac{1 + 8 \times K_b \times [C_0]}{4K_b} \right)^2$$

Figure 1S. (a) UV-Vis spectra of [Cu$_2$(EHI)]$^{4+}$ in methanol, 0.1 mM. (b) Magnification of the low energy region.
Figure 2S. (a) Family of UV-Vis spectra taken upon addition of a concentrated solution of NaN$_3$ to [Cu$_2$EHI]$^{4+}$ in 9:1 methanol/acetonitrile (v/v) solution. Solid black lines: initial and final spectra of the titration, corresponding to [Cu$_2$EHI]$^{4+}$ and the mixture of [Cu$_2$EHI(N$_3$)]$^{3+}$ and [Cu$_2$EHI(N$_3$)$_2$]$^{2+}$ species, respectively. (b) Distribution diagram (concentration vs. equiv. of added NaN$_3$) of the species, calculated for log $K_{b1} = 4.61$, and log $K_{b2} = 3.59$, according to reactions (1) and (2), respectively.

[Cu$_2$EHI]$^{4+}$ + N_3^- ⇌ [Cu$_2$EHI(N$_3$)]$^{3+}$ \hspace{1cm} (1)

[Cu$_2$EHI(N$_3$)]$^{3+}$ + N_3^- ⇌ [Cu$_2$EHI(N$_3$)$_2$]$^{2+}$ \hspace{1cm} (2)

Solid and dotted black lines: free [Cu$_2$EHI]$^{4+}$ and [Cu$_2$EHI(N$_3$)]$^{3+}$, respectively; dashed black line: [Cu$_2$EHI(N$_3$)$_2$]$^{2+}$. The graph shows the experimental profile of absorbance vs. equiv. NaN$_3$ at 385 nm (diamonds) and the fitted curve (dashed line).
Figure 3S. (a) 1H-NMR spectral variation of a solution of [Cu$_2$(EHI)](ClO$_4$)$_4$ (2.2 mM) in deuterated methanol (MeOD) upon increasing the temperature (trace 1: -15 °C; 2: 0 °C; 3: 15 °C; 4: 35 °C); (b) 1H-NMR spectral variation of a solution of [Cu$_2$(EHI)](ClO$_4$)$_4$ (1.98 mM) in MeOD/deuterated acetate buffer (50 mM, pH 5.1) 10:1 (v/v) upon increasing the temperature (trace 1: -15 °C; 2: 0 °C; 3: 15 °C; 4: 25 °C; 5: 35 °C).
Figure 4S. Effect of substrate concentration on the initial rate of oxidation of L-/D-Dopa (a), L-/D-DopaOMe (b), and R-/S-norepinephrine (c) by [Cu₂EHI](ClO₄)₄ (1 μM) in a 10:1 (v/v) mixture of methanol/aqueous acetate buffer (50 mM) at pH=5.1.
Figure 5S. Effect of substrate concentration on the initial rate of oxidation of L-/D-Dopa (a), L-/D-DopaOMe (b), and R-/S-norepinephrine (c) by [Cu_{2}EHI](ClO_{4})_{4} (5 μM) in a 10:1 (v/v) mixture of methanol/aqueous acetate buffer (50 mM) at pH=5.1.
Figure 6S. (Left) 1H NMR spectrum in acetone d-6 (δ values, ppm) of the crude product mixture of hydroxylation reaction of the TBA salt of L-tyrosine. (Right) Expansion of the aromatic region of the spectrum, unreacted phenol signals are indicated with arrows.

Figure 7S. (Left) 1H NMR spectrum in acetone d-6 (δ values, ppm) of the main product from the hydroxylation reaction of the TBA salt of L-tyrosine. (Right) Expansion of the aromatic region of the spectrum.
Figure 8S. GC-MS chromatogram of product mixture of the hydroxylation reaction of the TBA salt of L-tyrosine (upper trace) and fragmentation pattern of the main product (bottom trace), with retention time of 26.25 min.
Figure 9S. UV-Vis spectral changes observed during the oxidation of tetrabutylammonium salts of \(N\)-acetyl-L-tyrosine ethyl ester (left), and \(N\)-acetyl-D-tyrosine ethyl ester (right) by \([\text{Cu}_2(\text{EHI})]^2+/\text{O}_2\).