Supporting Information for:

F-element metalated dipyrrins: Synthesis and characterization of a family of uranyl bis(dipyrrinate) complexes

Duer Bolotaulo, Alejandro J. Metta-Magaña, and Skye Fortier

Dept. of Chemistry, University of Texas at El Paso, El Paso, TX 79968

To whom correspondence should be addressed. Email: asfortier@utep.edu
TABLE OF CONTENTS TABLE OF CONTENTS

Figure S1. 1H NMR spectrum of 2^Fc ... S5
Figure S2. 13C NMR spectrum of 2^Fc in ... S6
Figure S3. HMQCGP NMR spectrum of 2^Fc .. S7
Figure S4. 1H NMR spectrum of 3^tol ... S8
Figure S5. 13C NMR spectrum of 3^tol ... S9
Figure S6. HMQCGP NMR spectrum of 3^tol ... S10
Figure S7. 1H NMR spectrum of 3^anis .. S11
Figure S8. 13C NMR spectrum of 3^anis ... S12
Figure S9. HMQCGP NMR spectrum of 3^anis .. S13
Figure S10. 1H NMR spectrum of 3^mes .. S14
Figure S11. 13C NMR spectrum of 3^mes .. S15
Figure S12. HMQCGP NMR spectrum of 3^mes .. S16
Figure S13. 1H NMR spectrum of 3^Fc .. S17
Figure S14. 13C NMR spectrum of 3^Fc .. S18
Figure S15. HMQCGP NMR spectrum of 3^Fc .. S19
Figure S16. 1H NMR spectrum of 4^tol-THF ... S20
Figure S17. 1H NMR spectrum of 4^anis-THF ... S21
Figure S18. 1H NMR spectrum of 4^mes-THF ... S22
Figure S19. 1H NMR spectrum of 4^Fc-THF ... S23
Figure S20. 1H NMR spectrum of 4^tol-DMAP ... S24
Figure S21. 13C NMR spectrum of 4^tol-DMAP .. S25
Figure S22. HMQCGP NMR spectrum of 4^tol-DMAP ... S26
Figure S23. 1H NMR spectrum of 4^anis-DMAP .. S27
Figure S24. 13C NMR spectrum of 4^anis-DMAP .. S28
Figure S25. HMQCGP NMR spectrum of \(^{4\text{anis}}\)-DMAP .. S29
Figure S26. \(^1\text{H} NMR \) spectrum of \(^{4\text{mes}}\)-DMAP .. S30
Figure S27. \(^{13}\text{C} NMR \) spectrum of \(^{4\text{mes}}\)-DMAP .. S31
Figure S28. HMQCGP NMR spectrum of \(^{4\text{mes}}\)-DMAP .. S32
Figure S29. \(^1\text{H} NMR \) spectral array of \(^{4\text{Fc}}\)-DMAP .. S33
Figure S30. \(^1\text{H} NMR \) spectrum of \(^{4\text{Fc}}\)-DMAP at \(-30\) °C .. S34
Figure S31. \(^1\text{H} NMR \) spectrum of \(^{4\text{tol}}\)-DMAP at \(30\) °C .. S35
Figure S32. \(^1\text{H} NMR \) spectrum of \(^{4\text{tol}}\)-DMAP in at \(80\) °C .. S36
Figure S33. Solid-state molecular structure of \(^{4\text{tol}}\)-THF·3THF .. S37
Figure S34. Solid-state molecular structure of \(^{4\text{anis}}\)-THF·THF·C\(_3\)H\(_12\) .. S38
Figure S35. Solid-state molecular structure of \(^{4\text{Fc}}\)-THF·C\(_3\)H\(_12\) .. S39
Figure S36. Solid-state molecular structure of \(^{4\text{mes}}\)-DMAP·THF·0.5C\(_3\)H\(_12\) .. S40
Figure S37. Solid-state molecular structure of \(^{4\text{tol}}\)-THF·3THF with space filling atoms S41
Table S1. X-ray crystallographic data for uranyl complexes .. S42
Figure S38. Room temperature UV/vis absorption spectra for \(^{2\text{tol}}\) .. S43
Figure S39. Room temperature UV/vis absorption spectra for \(^{2\text{anis}}\) .. S44
Figure S40. Room temperature UV/vis absorption spectra for \(^{2\text{mes}}\) .. S45
Figure S41. Room temperature UV/vis absorption spectra for \(^{2\text{Fc}}\) .. S46
Figure S42. Room temperature UV/vis absorption spectra for protonated dipyrrins S47
Figure S43. Room temperature UV/vis absorption spectra for sodium dipyrrins S48
Figure S44. Room temperature UV/vis absorption spectra for uranyl dipyrrins S49
Table S2. Table of UV/vis absorption spectral data .. S50
Figure S45. Room temperature cyclic voltammogram of \(^{4\text{tol}}\)-DMAP in THF S51
Figure S46. Room temperature cyclic voltammogram of wave 1 of \(^{4\text{tol}}\)-DMAP in THF S52
Figure S47. Room temperature cyclic voltammogram of wave 2 of \(^{4\text{tol}}\)-DMAP in THF S53
Figure S48. Room temperature cyclic voltammogram of wave 3 of 4^{tol}-DMAP in THFS54
Figure S49. Room temperature cyclic voltammogram of 4^{anis}-DMAP in THFS55
Figure S50. Room temperature cyclic voltammogram of wave 1 of 4^{anis}-DMAP in THFS56
Figure S51. Room temperature cyclic voltammogram of wave 2 of 4^{anis}-DMAP in THFS57
Figure S52. Room temperature cyclic voltammogram of wave 3 of 4^{anis}-DMAP in THFS58
Figure S53. Room temperature cyclic voltammogram of 4^{mes}-DMAP in THFS59
Figure S54. Room temperature cyclic voltammogram of wave 1 of 4^{mes}-DMAP in THFS60
Figure S55. Room temperature cyclic voltammogram of wave 2 of 4^{mes}-DMAP in THFS61
Figure S56. Room temperature cyclic voltammogram of wave 3 of 4^{mes}-DMAP in THFS62
Figure S57. Room temperature cyclic voltammogram of wave 4 of 4^{mes}-DMAP in THFS63
Figure S58. Room temperature cyclic voltammogram of 4^{Fe}-DMAP.S64
Figure S59. Room temperature cyclic voltammogram of 4^{Fe}-DMAP in THFS65
Figure S60. Room temperature cyclic voltammograms of 2^{anis} in THFS66
Figure S61. Room temperature cyclic voltammogram of wave 1 of 2^{anis} in THFS67
Figure S62. Room temperature cyclic voltammograms of UO₂(N(Si(CH₃)₃)₂(THF)₂S68
Figure S63. Fluorescence spectra..S69
Figure S64. IR spectrum (KBr pellet) of 4^{tol}-DMAP ...S70
Figure S65. IR spectrum (KBr pellet) of 4^{anis}-DMAP ...S71
Figure S66. IR spectrum (KBr pellet) of 4^{mes}-DMAP ..S72
Figure S67. IR spectrum (KBr pellet) of 4^{Fe}-DMAP ...S73
Figure S68. IR spectra (KBr pellet) of uranyl bis(dipyrrin) complexesS74
Figure S1. ^1H NMR spectrum of 2^{Fc} in C$_6$D$_6$.
Figure S2. 13C NMR spectrum of 2^{Fe} in C_6D_6.
Figure S3. HMQCGP NMR spectrum of 2^Fe in C_6D_6.
Figure S4. 1H NMR spectrum of 3^{tol} in C$_6$D$_6$/py-d_5.
Figure S5. 13C NMR spectrum of 3tol in C$_6$D$_6$/py-d_5.
Figure S6. HMQCGP NMR spectrum of 3tol in C\textsubscript{6}D\textsubscript{6}/py-\textit{d}_5.
Figure S7. 1H NMR spectrum of 3^{anis} in C$_6$D$_6$/py-d_5.
Figure S8. 13C NMR spectrum of 3anis in C$_6$D$_6$/py-d$_5$.
Figure S9. HMQCGP NMR spectrum of 3^anis in C$_6$D$_6$/py-d$_5$.
Figure S10. 1H NMR spectrum of 3^{mes} in $C_6D_6/py-d_5$.
Figure S11. 13C NMR spectrum of 3^{mes} in C$_6$D$_6$/py-d_5.
Figure S12. HMQCGP NMR spectrum of 3^{mes} in C$_6$D$_6$/py-d$_5$.
Figure S13. 1H NMR spectrum of 3^{Fe} in C$_6$D$_6$/py-d_5.
Figure S14. 13C NMR spectrum of 3$^{\text{Fe}}$ in C$_6$D$_6$/py-d_5.
Figure S15. HMQCGP NMR spectrum of 3^{Fe} in C$_6$D$_6$/py-d$_5$.
Figure S16. 1H NMR spectrum of 4thol-THF in C$_6$D$_6$/py-d_5.

+ = protonated ligand
Figure S17. 1H NMR spectrum of 4$_\text{anis}$-THF in py-d_5.
Figure S18. 1H NMR spectrum of 4^{mes}-THF in py-d_5.
Figure S19. 1H NMR spectrum of 4Fc-THF in C$_6$D$_6$/py-d_5.
Figure S20. 1H NMR spectrum of 4th-DMAP in C$_6$D$_6$/py-d$_5$.
Figure S21. 13C NMR spectrum of 4^tol-DMAP in C$_6$D$_6$/py-d_5.
Figure S22. HMQCGP NMR spectrum of 4tol-DMAP in C\textsubscript{6}D\textsubscript{6}/pyd\textsubscript{5}.
Figure S23. 1H NMR spectrum of 4^{anis}-DMAP in C$_6$D$_{6}$/py-d$_5$.
Figure S24. 13C NMR spectrum of 4$^{\text{anis-}}$DMAP in C$_6$D$_6$/py-d_5.
Figure S25. HMQCGP NMR spectrum of 4^anis^ DMAP in C_6D_6/ py-d5.
Figure S26. 1H NMR spectrum of 4mes-DMAP in C$_6$D$_6$/py-d_5.
Figure S27. 13C NMR spectrum of 4$^{\text{mes}}$-DMAP in C$_6$D$_6$/py-d_5.
Figure S28. HMQCGP NMR spectrum of 4mes-DMAP in C₆D₆/py-d₅.
Figure S29. 1H NMR spectral array of 4F2-DMAP in C$_7$D$_6$/py-d_5. Spectrum 1 corresponds to -30°C, and the subsequent numbers correspond to increasing temperatures in increments of 10°C.
Figure S30. 1H NMR spectrum of 4^{Fe}-DMAP in C$_7$D$_8$/py-d_5 at -30°C.
Figure S31. 1H NMR spectrum of 4^{Fe}-DMAP in C$_2$D$_6$/py-d_5 at 30 °C.
Figure S32. 1H NMR spectrum of 4$^{\text{Fe}}$-DMAP in C$_7$D$_8$/py-d_5 at 80 °C.
Figure S33. Solid-state molecular structure of 4tol-THF-3THF with 50% probability ellipsoids. Co-crystallized THF and second molecule of 4tol-THF omitted for clarity. Selected bond lengths (Å) and bond angles (°): U1-O1 = 1.765(5); U1-O2 = 1.768(5); U1-O3 = 2.445(5); U1-N1 = 2.464(6); U1-N2 = 2.532(6); U1-N3 = 2.482(6); U1-N4 = 2.546(6); O1-U1-O2 = 177.3(2); N2-N1-C1 = 163.9(5); N1-N2-C2 = 160.1(5); N4-N3-C3 = 161.8(5); C4-N4-N3 = 165.7(5); N4-U1-O1 = 84.4(2); O3-U1-O1 = 84.2(2); N1-U1-O1 = 99.2(2); N2-U1-O1 = 82.3(2); N3-U1-O1 = 97.0(2); N4-U1-O1 = 84.4(2). Dihedral angle of the planes between pyrrole 4 (containing N4) and pyrrole 3 (containing N3) = 27.31°. Dihedral angle of the planes between pyrrole 1 (containing N1) and pyrrole 2 (containing N2) = 31.01°.
Figure S34 Solid-state molecular structure of 4^{anis}-THF-THF-C_5H_{12} with 50% probability ellipsoids. Co-crystallized solvent and second molecule of 4^{anis}-THF omitted for clarity. Selected bond lengths (Å) and bond angles (°): U1-O1 = 1.759(4); U1-O2 = 1.764(4); U1-O3 = 2.463(3); U1-N1 = 2.546(5); U1-N2 = 2.453(5); U1-N3 =2.479(5); U1-N4 = 2.503(5); O1-U1-O2 = 176.8(2); N2-N1-C2 = 164.7(4); N1-N2-C1 = 160.0(4); N4-N3-C3 = 161.7(4); C4-N4-N3 = 163.6(4); N4-U1-O1 = 84.2(2); O3-U1-O1 = 83.9(2); N1-U1-O1 = 98.9(2); N2-U1-O1 = 82.0(2); N3-U1-O1 = 97.6(2); N4-U1-O1 = 84.2(2). Dihedral angle of the planes between pyrrole 4 (containing N4) and pyrrole 3 (containing N3) = 29.58°. Dihedral angle of the planes between pyrrole 1 (containing N1) and pyrrole 2(containing N2) = 29.58°.
Figure S35. Solid-state molecular structure of 4^{Fe}-THF-C$_5$H$_{12}$ with 50% probability ellipsoids. Co-crystallized solvent molecule omitted for clarity. Selected bond lengths (Å) and bond angles (°): U1-O1 = 1.773(3); U1-O3 = 2.489(5); U1-N1 = 2.457(4); U1-N2 = 2.482(4); O1-U1-O2 = 177.0; N2-N1-C1 = 150.3(4); N1-N2-C2 = 165.5(4); O3-U1-O1 = 89.1; N1-U1-O1 = 91.3; N2-U1-O1 = 89.1; Dihedral angle of the planes between pyrrole 1 (containing N1) and pyrrole 2 (containing N2) = 37.72°.
Figure S36. Solid-state molecular structure of 4mes-DMAP·THF·0.5C₅H₁₂ with 50% probability ellipsoids. Co-crystallized solvent omitted for clarity. Selected bond lengths (Å) and bond angles (°): U1-O1 = 1.776(4); U1-O2 = 1.764(4); U1-N5 = 2.489(5); U1-N1 = 2.554(4); U1-N2 = 2.472(5); U1-N3 = 2.556(4); U1-N4 = 2.468(4); O1-U1-O2 = 176.9(2); N2-N1-C1 = 169.2(4); N1-N2-C2 = 164.3(4); N4-N3-C3 = 167.5(4); C4-N4-N3 = 164.8(4); N4-U1-O1 = 100.1(2); N5-U1-O1 = 89.1(2); N1-U1-O1 = 96.4(2); N2-U1-O1 = 82.6(2); N3-U1-O1 = 82.2(2). Dihedral angle of the planes between pyrrole 4 (containing N4) and pyrrole 3 (containing N3) = 22.34°. Dihedral angle of the planes between pyrrole 1 (containing N1) and pyrrole 2 (containing N2) = 20.41°.
Figure S37. Side view of the solid-state molecular structure of 4^{ord}-THF-3THF with space filling atoms. Green atom is uranium, red atoms are oxygen, blue atoms are nitrogen, grey atoms are carbon, and hydrogen atoms are white.
Table S1. X-ray crystallographic data for 4tolyl-THF·3THF, 4anis-THF·THF·C$_5$H$_{12}$, 4Fc-THF·C$_5$H$_{12}$, and 4mes-DMAP·THF·0.5C$_5$H$_{12}$.

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>4tolyl-THF·3THF</th>
<th>4anis-THF·THF·C5H${12}$</th>
<th>4mes-DMAP·THF·0.5C5H${12}$</th>
<th>4Fc-THF·C5H${12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Habit, color</td>
<td>Block, red-orange</td>
<td>Plate, red-orange</td>
<td>Plate, red</td>
<td>Plate, dark red</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.18 × 0.10 × 0.05</td>
<td>0.41 × 0.33 × 0.06</td>
<td>0.96 × 0.63 × 0.19</td>
<td>0.72 × 0.15 × 0.01</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>monoclinic</td>
<td>trigonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
<td>P2$_1$/c</td>
<td>P-3c1</td>
</tr>
<tr>
<td>Volume (\AA^3)</td>
<td>3618.4(2)</td>
<td>3750.1(3)</td>
<td>4625.7(5)</td>
<td>6141.2(5)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.4946(5)</td>
<td>14.5004(7)</td>
<td>9.3522(6)</td>
<td>20.5164(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.8228(5)</td>
<td>16.3863(8)</td>
<td>26.9204(16)</td>
<td>20.5164(8)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.5676(5)</td>
<td>16.7499(9)</td>
<td>18.8537(11)</td>
<td>16.8469(7)</td>
</tr>
<tr>
<td>α(°)</td>
<td>98.7660(10)°</td>
<td>99.0510(10)°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>β(°)</td>
<td>102.5540(10)°</td>
<td>103.8570(10)°</td>
<td>102.9630(10)°</td>
<td>90°</td>
</tr>
<tr>
<td>γ(°)</td>
<td>96.9580(10)°</td>
<td>98.0330(10)°</td>
<td>90°</td>
<td>120°</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Formula weight (g/mol)</td>
<td>1705.57</td>
<td>1923.66</td>
<td>1116.23</td>
<td>5942.79</td>
</tr>
<tr>
<td>Density (calculated) (Mg/m3)</td>
<td>1.565</td>
<td>1.704</td>
<td>1.603</td>
<td>1.607</td>
</tr>
<tr>
<td>Absorption coefficient (mm$^{-1}$)</td>
<td>4.528</td>
<td>4.384</td>
<td>3.563</td>
<td>4.685</td>
</tr>
<tr>
<td>F$_{000}$</td>
<td>1680.0</td>
<td>1892.0</td>
<td>2268.0</td>
<td>2888.0</td>
</tr>
<tr>
<td>Total no. reflections</td>
<td>39775</td>
<td>41352</td>
<td>56102</td>
<td>64170</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>16322</td>
<td>17045</td>
<td>13066</td>
<td>4714</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R$_1$ = 0.0456, wR$_2$ = 0.1109</td>
<td>R$_1$ = 0.0404, wR$_2$ = 0.1032</td>
<td>R$_1$ = 0.0538, wR$_2$ = 0.1081</td>
<td>R$_1$ = 0.0330, wR$_2$ = 0.0765</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e Å$^{-3}$)</td>
<td>2.36 and -1.19</td>
<td>2.23 and -0.76</td>
<td>2.65 and -5.48</td>
<td>2.97 and -0.82</td>
</tr>
<tr>
<td>GOF</td>
<td>1.045</td>
<td>1.050</td>
<td>1.258</td>
<td>1.142</td>
</tr>
</tbody>
</table>
Figure S38. Room temperature UV/vis absorption spectra for 2^{tol} (benzene, 24.49 μM) (grey), 3^{tol} (benzene, 10.46 μM) (orange), and 4^{tol}-DMAP (benzene, 11.8 μM) (black).
Figure S39. Room temperature UV/vis absorption spectra for 2^{anis} (benzene, 24.58 μM) (grey), 3^{anis} (benzene, 9.68 μM) (orange), and 4^{anis}-DMAP (benzene, 11.76 μM) (black).
Figure S40. Room temperature UV/vis absorption spectra for 2^{mes} (benzene, 25.09 μM) (grey), 3^{mes} (benzene, 9.66 μM) (orange), and 4^{mes}-DMAP (benzene, 12.9 μM) (black).
Figure S41. Room temperature UV/vis absorption spectra for 2^Fe (benzene, 27.98 μM) (grey), 3^Fe (benzene, 10.67 μM) (orange), and 4^Fe-DMAP (benzene, 10.59 μM) (black).
Figure S42. Room temperature UV/vis absorption spectra for protonated dipyrrins 2^tol (purple), 2^anis (red), 2^mes (blue), and 2^Fc (green).
Figure S43. Room temperature UV/vis absorption spectra for sodium dipyrrins 3^{tol} (purple), 3^{anis} (red), 3^{mes} (blue), and 3^{Fe} (green).
Figure S44. Room temperature UV/vis absorption spectra for uranyl dipyrrins 4^{tol}-DMAP (purple), 4^{anis}-DMAP (red), 4^{mes}-DMAP (blue), and 4^{Fe}-DMAP (green).
Table S2. UV/vis absorption data.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (μM)</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>(\varepsilon) (L·mol(^{-1})·cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(^{\text{tol}})</td>
<td>24.49</td>
<td>436</td>
<td>22832</td>
</tr>
<tr>
<td>2(^{\text{anis}})</td>
<td>24.58</td>
<td>437</td>
<td>24385</td>
</tr>
<tr>
<td>2(^{\text{mes}})</td>
<td>25.09</td>
<td>453</td>
<td>18959</td>
</tr>
<tr>
<td>2(^{\text{Fe}})</td>
<td>27.98</td>
<td>456</td>
<td>20412</td>
</tr>
<tr>
<td>3(^{\text{tol}})</td>
<td>10.46</td>
<td>436</td>
<td>23365</td>
</tr>
<tr>
<td>3(^{\text{anis}})</td>
<td>9.68</td>
<td>437</td>
<td>24755</td>
</tr>
<tr>
<td>3(^{\text{mes}})</td>
<td>9.66</td>
<td>432</td>
<td>22375</td>
</tr>
<tr>
<td>3(^{\text{Fe}})</td>
<td>10.67</td>
<td>453</td>
<td>20185</td>
</tr>
<tr>
<td>4(^{\text{tol}})-DMAP</td>
<td>11.8</td>
<td>462</td>
<td>35416</td>
</tr>
<tr>
<td>4(^{\text{anis}})-DMAP</td>
<td>11.76</td>
<td>467</td>
<td>34826</td>
</tr>
<tr>
<td>4(^{\text{mes}})-DMAP</td>
<td>12.9</td>
<td>472</td>
<td>30214</td>
</tr>
<tr>
<td>4(^{\text{Fe}})-DMAP</td>
<td>10.59</td>
<td>462</td>
<td>27578</td>
</tr>
</tbody>
</table>
Figure S45. Room temperature cyclic voltammogram of 4th-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte). The scan rate is 250 mV/s.
Figure S46. Room temperature cyclic voltammogram of wave 1 of 4tol-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at \(E_{1/2} = 0\) V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte).
Figure S47. Room temperature cyclic voltammogram of wave 2 of 4th-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte).
Figure S48. Room temperature cyclic voltammogram of wave 3 of 4$^\text{tol}$-DMAP in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2} = 0$ V). (0.1M [NBu$_4$][PF$_6$] as supporting electrolyte).
Figure S49. Room temperature cyclic voltammogram of 4anilDMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte). The scan rate is 125 mV/s.
Figure S50. Room temperature cyclic voltammogram of wave 1 of 4anis-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at $E_{1/2} = 0$ V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte).
Figure S51. Room temperature cyclic voltammogram of wave 2 of 4_{anis}-DMAP in THF (vs internally referenced Cp₂Fe/Cp₂Fe⁺ at E_{1/2} = 0 V). (0.1M [NBu₄][PF₆] as supporting electrolyte).
Figure S52. Room temperature cyclic voltammogram of wave 3 of 4anis-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte).
Figure S53. Room temperature cyclic voltammogram of 4mesDMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte). The scan rate is 125 mV/s.
Figure S54. Room temperature cyclic voltammogram of wave 1 of 4^mes-DMAP in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2} = 0$ V). (0.1M $[\text{NBu}_4][\text{PF}_6]$ as supporting electrolyte).
Figure S55. Room temperature cyclic voltammogram of wave 2 of 4mes-DMAP in THF (vs internally referenced Cp²Fe/Cp²Fe⁺ at E₁/₂ = 0 V). (0.1M [NBu₄][PF₆] as supporting electrolyte).
Figure S56. Room temperature cyclic voltammogram of wave 3 of 4\textsubscript{mes}-DMAP in THF (vs internally referenced Cp\textsubscript{2}Fe/Cp\textsubscript{2}Fe+ at E\textsubscript{1/2} = 0 V). (0.1M [NBu\textsubscript{4}][PF\textsubscript{6}] as supporting electrolyte).
Figure S57. Room temperature cyclic voltammogram of wave 4 of 4^{mes}-DMAP in THF (vs internally referenced Cp₂Fe/Cp₂Fe⁺ at E_{1/2} = 0 V). (0.1M [NBu₄][PF₆] as supporting electrolyte).
Figure S58. Room temperature cyclic voltammogram of ^{4}Fe-DMAP in THF at 125 mV (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2} = 0$ V). (0.1M [NBu$_4$][PF$_6$] as supporting electrolyte). The scan rate is 125 mV/s.
Figure S59. Room temperature cyclic voltammogram of 4Fe-DMAP in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at E$_{1/2}$=0 V). (0.1M [NBu$_4$][PF$_6$] as supporting electrolyte).
Figure S60. Room temperature cyclic voltammogram of 2^anis in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2}=0$ V). (0.1M [NBu$_4$][PF$_6$] as supporting electrolyte).
Figure S61. Room temperature cyclic voltammogram of wave 1 of 2^{anis} in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2}=0$ V). (0.1M [NBu$_4$][PF$_6$] as supporting electrolyte).
Figure S62. Room temperature cyclic voltammograms of UO$_2$(N(Si(CH$_3$)$_3$)$_2$)$_2$(THF)$_2$ in THF (vs internally referenced Cp$_2$Fe/Cp$_2$Fe$^+$ at $E_{1/2} = 0$ V). Bottom voltammogram at a scan rate of 250 mV/s.
Figure S63. Fluorescence spectra of dipyrrins (2), sodium dipyrrins (3), and uranyl bis(dipyrrins) (4) in benzene (10 μM) with excitation wavelengths set to their respective absorption maxima determined in the same solvent and concentrations.
Figure S64. IR spectrum (KBr pellet) of 4-tol-DMAP.
Figure S65. IR spectrum (KBr pellet) of 4-^\text{anis}-\text{DMAP}.
Figure S66. IR spectrum (KBr pellet) of 4$^{\text{mes}}$-DMAP.
Figure S67. IR spectrum (KBr pellet) of 4^Fe-DMAP.
Figure S68. IR spectra (KBr pellet) of uranyl bis(dipyrrin) complexes. The arrows indicate the asymmetric ν_3 U-O stretch of uranyl at 963 cm$^{-1}$.