SUPPORTING INFORMATION

Metal-Free Pincer Ligand Chemistry: Polycationic Phosphonium Lewis Acids

Kevin M. Szkop^a and Douglas W. Stephan^{a*}

Table of Contents

1. NMR spectra of compounds 2-10 Figure S1. ¹H NMR spectrum of **2**, CD₃CN Figure S2. ³¹P{¹H} NMR spectrum of 2, CD₃CN Figure S3. ¹⁹F NMR spectrum of **2**, CD₃CN Figure S4. ¹³C{¹H} NMR spectrum of **2**, CD₃CN Figure S5. ¹H NMR spectrum of **3**, CD₃CN. Figure S6. ³¹P{¹H} NMR spectrum of **3**, CD₃CN Figure S7. ¹⁹F NMR spectrum of **3**, CD₃CN Figure S8. ¹¹B{¹H} NMR spectrum of **5**, CD₃CN Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of **3**, CD₃CN Figure S10. ¹H NMR spectrum of **4**, CDCl₃ Figure S11. ³¹P{¹H} NMR spectrum of **4**, CDCl₃ Figure S12. ¹⁹F NMR spectrum of **4**, CDCl₃ Figure S13. ¹³C{¹H} NMR spectrum of **4**, CDCl₃ Figure S14. ¹H NMR spectrum of **5**, CD₃CN Figure S15. ³¹P{¹H} NMR spectrum of **5**, CD₃CN Figure S16. ¹⁹F NMR spectrum of **5**, CD₃CN Figure S17. ¹¹B{¹H} NMR spectrum of **5**, CD₃CN Figure S18. ¹³C{¹H} NMR spectrum of **5**, CD₃CN Figure S19. ¹H NMR spectrum of **6**, CD₃CN Figure S20. ³¹P{¹H} NMR spectrum of **6**, CD₃CN Figure S21. ¹⁹F NMR spectrum of **6**, CD₃CN Figure S22. ¹³C{¹H} NMR spectrum of **6**, CD₃CN Figure S23. ¹H NMR spectrum of **7**, CD₂Cl₂ Figure S24. ³¹P{¹H} NMR spectrum of **7**, CD₂Cl₂ Figure S25. ¹⁹F NMR spectrum of **7**, CD₂Cl₂ Figure S26. ¹¹B{¹H} NMR spectrum of **7**, CD₂Cl₂ Figure S27. ¹³C{¹H} NMR spectrum of **7**, CD₂Cl₂ Figure S28. ¹H NMR spectrum of **8**, CDCl₃

Figure S29. ³¹P{¹H} NMR spectrum of 8, CDCl₃

Figure S30. ¹⁹F NMR spectrum of **8**, CDCl₃

Figure S31. ¹³C{¹H} NMR spectrum of **8**, CDCl₃

Figure S32. ¹H NMR spectrum of **9**, CD₂Cl₂

Figure S33. ³¹P{¹H} NMR spectrum of **9**, CD₂Cl₂

Figure S34. ¹⁹F NMR spectrum of **9**, CD₂Cl₂

Figure S35. $^{11}B{^{1}H}$ NMR spectrum of **9**, CD₂Cl₂

Figure S36. ¹³C{¹H} NMR spectrum of **8**, CD₂Cl₂

Figure S37. ¹H-¹H COSY NMR spectrum of **9**, CD₂Cl₂

Figure S38. ¹H-¹³C HSQC NMR spectrum of **9**, CD₂Cl₂

Figure S39. ${}^{31}P{}^{1}H$ NMR spectrum of **10**, CH₂Cl₂

Figure S40. ¹⁹F NMR spectrum of **10**, CH₂Cl₂

2. NMR spectra of catalytic studies

Figure S41. ¹⁹F NMR spectrum of hydrodefluorination of 1-fluoroadamantane with Figure S42. ¹⁹F NMR spectrum of hydrodefluorination of 1-fluoroadamantane with Figure S43. ¹H NMR spectra of dimerization of 1,1-diphenylethylene with Figure S44. ¹H NMR spectrum of dimerization of 1,1-diphenylethylene with Figure S45. ¹H NMR spectrum of dehydrocoupling of phenol and triethylsilane with Figure S46. ¹H NMR spectrum of dehydrocoupling of phenol and triethylsilane with

3. Tabulated single crystal diffraction studies and results

Figure S47. POV-RAY of 5

Crystallographic information of 2

Crystallographic information of 4

Crystallographic information of 5

Crystallographic information of 6

Crystallographic information of 8

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 Figure S6. ³¹P{¹H} NMR spectrum of **3**, CD₃CN

Figure S9. ¹³C{¹H} NMR spectrum of **3**, CD₃CN

Figure S13. $^{13}C{^{1}H}$ NMR spectrum of **4**, CDCl₃

Figure S15. $^{31}P\{^{1}H\}$ NMR spectrum of 5, CD_3CN

Figure S19. ¹H NMR spectrum of **6**, CD₃CN

Figure S20. ${}^{31}P{}^{1}H$ NMR spectrum of **6**, CD₃CN

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S24. ³¹P{¹H} NMR spectrum of **7**, CD₂Cl₂

Figure S33. ³¹P{¹H} NMR spectrum of **9**, CD₂Cl₂

Figure S38. ¹H-¹³C HSQC NMR spectrum of **9**, CD₂Cl₂

Hydrodefluorination of 1-fluoroadamantane with bis(fluorophosphonium)pyridine 2[B(C₆F₅)₄]

Procedure:

1-fluoroadamantane (15 mg, 0.10 mmol) and Et₃SiH (triethylsilane, 20 μ L, 0.12 mmol) were dissolved in CH₂Cl₂ (0.5 mL). The solution was transferred to an NMR tube charged with the title catalyst (9 mg, 5 mol %) and left at ambient temperature for 1 hour, at which time the reaction mixture was analyzed by ¹⁹F NMR. Conversion was determined by consumption of 1-fluoroadamantane and production of triethylsilyl fluoride. Additionally, no starting material is observed by ¹⁹F NMR.

Average conversion after 1 hour: > 99%

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 Figure S41. ¹⁹F{¹H} NMR spectrum of reaction with title catalyst after 1 hour. Three minor resonances correspond to *ortho, meta, para* fluorines of [B(C₆F₅)₄] counterions. Note: resonance corresponding to the P-F doublet is not observed in this view as it may be buried in the baseline.

Hydrodefluorination of 1-fluoroadamantane with bis(fluorophosphonium)pyridinium 3[B(C₆F₅)₄]

Procedure:

1-fluoroadamantane (15 mg, 0.10 mmol) and Et_3SiH (triethylsilane, 20 µL, 0.12 mmol) were dissolved in CH_2Cl_2 (0.5 mL). The solution was transferred to an NMR tube charged with the title catalyst (12 mg, 5 mol %) and left at ambient temperature for 1 hour, at which time the reaction mixture was analyzed by ¹⁹F NMR. Conversion was determined by consumption of 1-fluoroadamantane and production of triethylsilyl fluoride. Additionally, no starting material is observed by ¹⁹F NMR.

Average conversion after 1 hour: > 99%

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220
Figure S42. ¹⁹F{¹H} NMR spectrum of reaction with title catalyst after 1 hour. Three minor resonances correspond to ortho, meta, para fluorines of [B(C₆F₅)₄] counterions. Note: resonance corresponding to the P-F doublet is not observed in this view as it may be buried in the baseline.

Dimerization of 1,1-diphenylethylene with bis(fluorophosphonium)pyridine 2[B(C₆F₅)₄]

Procedure:

A solution of 1,1-diphenylethylene (18 mg, 0.10 mmol) in CDCl_3 (0.5 mL) was added to an NMR tube charged with the title catalyst (4 mg, 2 mol %). The reaction which became opaque and orange-green, was allowed to proceed at ambient temperature for 2.5 hours, after which time the reaction was analyzed by ¹H NMR spectroscopy and again at 20 hours. Conversion was determined by integration of diagnostic peaks in the ¹H NMR spectra – specifically the disappearance of the singlet resonance of the olefin -CH₂ protons of the starting material ($^{\delta}$ 5.51 ppm) and the emergence of a methyl singlet resonance of the product ($^{\delta}$ 1.59 ppm).

Average conversion: 61% (2.5 hours) and 99% (20 hours).

Dimerization of 1,1-diphenylethylene with bis(fluorophosphonium)pyridinium 3[B(C₆F₅)₄] in CD₂Cl₂

Procedure:

A solution of 1,1-diphenylethylene (18 mg, 0.10 mmol) in $CDCl_3$ (0.5 mL) was added to an NMR tube charged with the title catalyst (5 mg, 2 mol %). The reaction which became opaque and orange-green, was allowed to proceed at ambient temperature and analyzed at intervals by ¹H NMR spectroscopy. For NMR determination procedure, see previous page. It is noteworthy to note that the catalyst is fully soluble in this solvent, in stark difference to $CDCl_3$.

Average conversion: > 99% (1 hour)

Figure S44. ¹H NMR spectra of title reaction at reaction time of 1 hour (average: 99% conversion).

Dehydrocoupling of phenol and triethylsilane with bis(fluorophosphonium)pyridine $2[B(C_6F_5)_4]$

Procedure:

A solution containing phenol (9 mg, 0.10 mmol), Et₃SiH (triethylsilane, 20 μ L, 0.12 mmol) and mesityl (14 μ L, 0.10 mmol) in CDCl₃ (0.5 mL) was added to an NMR tube charged with the title catalyst (4 mg, 2 mol %). The immediate production of a gas, H₂, was noticed. The clear, colourless and vigorously bubbling reaction was allowed to proceed at ambient temperature for 2 hours, after which time the reaction was analyzed by ¹H NMR spectroscopy. Conversion was determined by integration of diagnostic peaks in the ¹H NMR spectra – namely the singlet resonance of the methyl protons of the internal standard to the resonances corresponding to both the aromatic and aliphatic protons of the product. Additionally, the O-H phenol resonance is not observed at the end of the reaction.

Average conversion after 2 hours: > 99%

Dehydrocoupling of phenol and triethylsilane with bis(fluorophosphonium)pyridinium 3[B(C₆F₅)₄]

Procedure:

A solution containing phenol (9 mg, 0.10 mmol), Et₃SiH (triethylsilane, 20 μ L, 0.12 mmol) and mesityl (14 μ L, 0.10 mmol) in CDCl₃ (0.5 mL) was added to an NMR tube charged with the title catalyst (5 mg, 2 mol %). The immediate production of a gas, H₂, was noticed. It was noticed that the catalyst was not fully in solution during the duration of the reaction. The clear and colourless reaction was allowed to proceed at ambient temperature for 2 hours, after which time the reaction was analyzed by ¹H NMR spectroscopy. For NMR determination procedure, see previous page.

Average conversion after 2 hours: > 99%

-1 Figure S46. ¹H NMR spectra of title reaction with insert of diagnostic aromatic region showing only one set of aromatic resonance signals corresponding to the product.

Figure S47. POV-RAY depiction of molecular structure of 2,6-bis(fluorophosphonium) pyridine **5**. P: orange, F: pink, C: black, N: blue. Hydrogen atoms and BF_4^- counterions omitted for clarity.

Table 1. Crystal data and structure refinement for 2 .		
Identification code	pre1	
Empirical formula	$C_{35}H_{33}F_6NO_6P_2S_2$	
Formula weight	803.68	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 16.5221(10) Å	<i>α</i> = 90°.
	b = 10.1677(6) Å	β= 100.283(2)°.
	c = 21.9637(12) Å	$\gamma = 90^{\circ}$.
Volume	3630.5(4) Å ³	
Z	4	
Density (calculated)	1.470 Mg/m ³	
Absorption coefficient	0.312 mm ⁻¹	
F(000)	1656	
Crystal size	$0.280 \ x \ 0.140 \ x \ 0.140 \ mm^3$	
Theta range for data collection	2.214 to 27.596°.	
Index ranges	-21<=h<=21, -13<=k<=13, -28<=l<=28	
Reflections collected	56971	
Independent reflections	8357 [R(int) = 0.0391]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8357 / 0 / 471	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0453, wR2 = 0.1103	
R indices (all data)	R1 = 0.0628, $wR2 = 0.1206$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.739 and -0.561 e.Å ⁻³	

	X	у	Z	U(eq)
S(1)	-824(1)	-845(1)	3259(1)	29(1)
S(2)	4666(1)	6568(1)	1320(1)	25(1)
P(1)	1735(1)	1726(1)	3508(1)	21(1)
P(2)	3967(1)	1117(1)	1674(1)	18(1)
F(1)	-174(2)	-862(3)	4432(1)	102(1)
F(2)	-1237(2)	-2057(4)	4191(1)	163(2)
F(3)	-1367(2)	-24(4)	4214(2)	158(2)
F(4)	4628(1)	6457(2)	128(1)	72(1)
F(5)	5481(1)	7858(2)	595(1)	56(1)
F(6)	5766(1)	5822(2)	688(1)	72(1)
O(1)	-238(1)	-1846(2)	3181(1)	63(1)
O(2)	-505(1)	442(2)	3211(1)	47(1)
O(3)	-1645(1)	-1067(2)	2929(1)	47(1)
O(4)	4433(1)	5217(2)	1336(1)	45(1)
O(5)	3986(1)	7455(2)	1171(1)	46(1)
O(6)	5295(1)	6998(2)	1813(1)	57(1)
C(7)	2917(1)	-547(2)	2174(1)	19(1)
C(1)	-40(2)	4685(3)	4123(1)	45(1)
C(2)	437(2)	5057(3)	3698(1)	41(1)
C(3)	976(2)	4161(2)	3509(1)	32(1)
C(4)	1033(1)	2888(2)	3752(1)	24(1)
C(5)	1230(1)	1018(2)	2789(1)	22(1)
C(6)	1710(1)	-2(2)	2499(1)	20(1)
N(1)	2492(1)	301(2)	2466(1)	19(1)
C(8)	3810(1)	-217(2)	2185(1)	20(1)
C(9)	3494(1)	703(2)	896(1)	21(1)
C(10)	3957(2)	158(2)	491(1)	27(1)
C(11)	3576(2)	-220(2)	-98(1)	34(1)
C(12)	2743(2)	-59(2)	-282(1)	35(1)
C(13)	2418(2)	-1472(3)	4965(1)	42(1)
C(14)	1838(2)	-1726(3)	4449(1)	42(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for pre1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(15)	1614(2)	-762(2)	3999(1)	33(1)
C(16)	1989(1)	466(2)	4081(1)	25(1)
C(17)	2642(1)	2605(2)	3416(1)	28(1)
C(18)	8(2)	3419(3)	4360(1)	42(1)
C(19)	546(1)	2516(3)	4178(1)	31(1)
C(20)	1336(1)	-1160(2)	2263(1)	26(1)
C(21)	1771(2)	-2003(2)	1949(1)	30(1)
C(22)	2570(1)	-1690(2)	1893(1)	26(1)
C(23)	2279(2)	470(3)	118(1)	41(1)
C(24)	2648(2)	855(3)	709(1)	35(1)
C(25)	5048(1)	1353(2)	1699(1)	20(1)
C(26)	5632(1)	569(2)	2066(1)	28(1)
C(27)	6464(2)	807(3)	2084(1)	34(1)
C(28)	6711(1)	1813(2)	1734(1)	32(1)
C(29)	6137(2)	2597(2)	1368(1)	31(1)
C(30)	5303(1)	2375(2)	1351(1)	26(1)
C(31)	3524(1)	2606(2)	1897(1)	24(1)
C(32)	2564(1)	728(3)	4616(1)	33(1)
C(33)	2775(2)	-244(3)	5052(1)	40(1)
C(34)	-911(3)	-949(5)	4061(2)	76(1)
C(35)	5151(2)	6680(3)	645(1)	37(1)

S(1)-O(2)	1.422(2)
S(1)-O(1)	1.436(2)
S(1)-O(3)	1.4371(19)
S(1)-C(34)	1.795(3)
S(2)-O(4)	1.4279(18)
S(2)-O(6)	1.4304(19)
S(2)-O(5)	1.4318(19)
S(2)-C(35)	1.811(2)
P(1)-C(17)	1.787(2)
P(1)-C(16)	1.792(2)
P(1)-C(5)	1.799(2)
P(1)-C(4)	1.803(2)
P(2)-C(31)	1.787(2)
P(2)-C(25)	1.795(2)
P(2)-C(9)	1.798(2)
P(2)-C(8)	1.808(2)
F(1)-C(34)	1.342(4)
F(2)-C(34)	1.303(4)
F(3)-C(34)	1.287(6)
F(4)-C(35)	1.317(3)
F(5)-C(35)	1.329(3)
F(6)-C(35)	1.331(3)
C(7)-N(1)	1.345(3)
C(7)-C(22)	1.391(3)
C(7)-C(8)	1.509(3)
C(1)-C(2)	1.378(4)
C(1)-C(18)	1.384(4)
C(1)-H(1)	0.9500
C(2)-C(3)	1.389(3)
C(2)-H(9)	0.9500
C(3)-C(4)	1.396(3)
C(3)-H(10)	0.9500
C(4)-C(19)	1.392(3)
C(5)-C(6)	1.514(3)

Table 3. Bond lengths [Å] and angles [°] for pre1.

C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-N(1)	1.344(3)
C(6)-C(20)	1.387(3)
C(8)-H(23)	0.9900
C(8)-H(24)	0.9900
C(9)-C(10)	1.389(3)
C(9)-C(24)	1.392(3)
C(10)-C(11)	1.388(3)
С(10)-Н(11)	0.9500
C(11)-C(12)	1.372(4)
C(11)-H(14)	0.9500
C(12)-C(23)	1.374(4)
C(12)-H(2)	0.9500
C(13)-C(14)	1.373(4)
C(13)-C(33)	1.380(4)
C(13)-H(3)	0.9500
C(14)-C(15)	1.395(3)
C(14)-H(33)	0.9500
C(15)-C(16)	1.391(3)
C(15)-H(32)	0.9500
C(16)-C(32)	1.398(3)
C(17)-H(4)	0.9800
С(17)-Н(6)	0.9800
С(17)-Н(5)	0.9800
C(18)-C(19)	1.387(3)
C(18)-H(7)	0.9500
C(19)-H(8)	0.9500
C(20)-C(21)	1.381(3)
C(20)-H(28)	0.9500
C(21)-C(22)	1.384(3)
C(21)-H(27)	0.9500
C(22)-H(26)	0.9500
C(23)-C(24)	1.390(3)
С(23)-Н(13)	0.9500
C(24)-H(12)	0.9500

C(25)-C(26)	1.392(3)
C(25)-C(30)	1.399(3)
C(26)-C(27)	1.390(3)
C(26)-H(19)	0.9500
C(27)-C(28)	1.382(3)
C(27)-H(18)	0.9500
C(28)-C(29)	1.381(3)
C(28)-H(17)	0.9500
C(29)-C(30)	1.390(3)
C(29)-H(16)	0.9500
C(30)-H(15)	0.9500
C(31)-H(20)	0.9800
C(31)-H(22)	0.9800
C(31)-H(21)	0.9800
C(32)-C(33)	1.377(4)
C(32)-H(31)	0.9500
C(33)-H(30)	0.9500
O(2)-S(1)-O(1)	112.16(13)
O(2)-S(1)-O(3)	115.83(13)
O(1)-S(1)-O(3)	115.07(12)
O(2)-S(1)-C(34)	102.91(16)
O(1)-S(1)-C(34)	104.4(2)
O(3)-S(1)-C(34)	104.59(15)
O(4)-S(2)-O(6)	115.99(13)
O(4)-S(2)-O(5)	114.10(12)
O(6)-S(2)-O(5)	114.51(14)
O(4)-S(2)-C(35)	103.93(12)
O(6)-S(2)-C(35)	103.49(13)
O(5)-S(2)-C(35)	102.49(12)
C(17)-P(1)-C(16)	109.97(11)
C(17)-P(1)-C(5)	111.61(10)
C(16)-P(1)-C(5)	110.11(10)
C(17)-P(1)-C(4)	107.61(11)
C(16)-P(1)-C(4)	110.00(10)
C(5)-P(1)-C(4)	107.46(10)
C(31)-P(2)-C(25)	109.44(10)
------------------	------------
C(31)-P(2)-C(9)	109.23(10)
C(25)-P(2)-C(9)	108.80(9)
C(31)-P(2)-C(8)	110.72(10)
C(25)-P(2)-C(8)	109.45(10)
C(9)-P(2)-C(8)	109.17(10)
N(1)-C(7)-C(22)	122.55(19)
N(1)-C(7)-C(8)	116.19(18)
C(22)-C(7)-C(8)	121.23(18)
C(2)-C(1)-C(18)	120.6(2)
C(2)-C(1)-H(1)	119.7
C(18)-C(1)-H(1)	119.7
C(1)-C(2)-C(3)	119.8(3)
C(1)-C(2)-H(9)	120.1
C(3)-C(2)-H(9)	120.1
C(2)-C(3)-C(4)	119.8(2)
C(2)-C(3)-H(10)	120.1
C(4)-C(3)-H(10)	120.1
C(19)-C(4)-C(3)	120.1(2)
C(19)-C(4)-P(1)	120.09(18)
C(3)-C(4)-P(1)	119.82(17)
C(6)-C(5)-P(1)	116.56(14)
C(6)-C(5)-H(5A)	108.2
P(1)-C(5)-H(5A)	108.2
C(6)-C(5)-H(5B)	108.2
P(1)-C(5)-H(5B)	108.2
H(5A)-C(5)-H(5B)	107.3
N(1)-C(6)-C(20)	122.91(19)
N(1)-C(6)-C(5)	116.54(18)
C(20)-C(6)-C(5)	120.51(19)
C(6)-N(1)-C(7)	117.89(18)
C(7)-C(8)-P(2)	113.88(14)
C(7)-C(8)-H(23)	108.8
P(2)-C(8)-H(23)	108.8
C(7)-C(8)-H(24)	108.8
P(2)-C(8)-H(24)	108.8

H(23)-C(8)-H(24)	107.7
C(10)-C(9)-C(24)	119.6(2)
C(10)-C(9)-P(2)	120.48(17)
C(24)-C(9)-P(2)	119.79(17)
C(11)-C(10)-C(9)	119.9(2)
С(11)-С(10)-Н(11)	120.1
C(9)-C(10)-H(11)	120.1
C(12)-C(11)-C(10)	120.3(2)
С(12)-С(11)-Н(14)	119.9
С(10)-С(11)-Н(14)	119.9
C(11)-C(12)-C(23)	120.2(2)
С(11)-С(12)-Н(2)	119.9
C(23)-C(12)-H(2)	119.9
C(14)-C(13)-C(33)	120.2(2)
С(14)-С(13)-Н(3)	119.9
C(33)-C(13)-H(3)	119.9
C(13)-C(14)-C(15)	120.7(3)
C(13)-C(14)-H(33)	119.7
C(15)-C(14)-H(33)	119.7
C(16)-C(15)-C(14)	118.9(2)
C(16)-C(15)-H(32)	120.5
C(14)-C(15)-H(32)	120.5
C(15)-C(16)-C(32)	120.0(2)
C(15)-C(16)-P(1)	120.52(17)
C(32)-C(16)-P(1)	119.51(19)
P(1)-C(17)-H(4)	109.5
P(1)-C(17)-H(6)	109.5
H(4)-C(17)-H(6)	109.5
P(1)-C(17)-H(5)	109.5
H(4)-C(17)-H(5)	109.5
H(6)-C(17)-H(5)	109.5
C(1)-C(18)-C(19)	120.2(3)
C(1)-C(18)-H(7)	119.9
C(19)-C(18)-H(7)	119.9
C(18)-C(19)-C(4)	119.4(2)
C(18)-C(19)-H(8)	120.3

C(4)-C(19)-H(8)	120.3
C(21)-C(20)-C(6)	118.5(2)
C(21)-C(20)-H(28)	120.7
C(6)-C(20)-H(28)	120.7
C(20)-C(21)-C(22)	119.4(2)
C(20)-C(21)-H(27)	120.3
C(22)-C(21)-H(27)	120.3
C(21)-C(22)-C(7)	118.5(2)
C(21)-C(22)-H(26)	120.7
C(7)-C(22)-H(26)	120.7
C(12)-C(23)-C(24)	120.4(2)
С(12)-С(23)-Н(13)	119.8
С(24)-С(23)-Н(13)	119.8
C(23)-C(24)-C(9)	119.6(2)
C(23)-C(24)-H(12)	120.2
C(9)-C(24)-H(12)	120.2
C(26)-C(25)-C(30)	119.8(2)
C(26)-C(25)-P(2)	121.65(17)
C(30)-C(25)-P(2)	118.49(16)
C(27)-C(26)-C(25)	119.7(2)
С(27)-С(26)-Н(19)	120.1
С(25)-С(26)-Н(19)	120.1
C(28)-C(27)-C(26)	120.1(2)
С(28)-С(27)-Н(18)	120.0
С(26)-С(27)-Н(18)	120.0
C(29)-C(28)-C(27)	120.7(2)
C(29)-C(28)-H(17)	119.6
С(27)-С(28)-Н(17)	119.6
C(28)-C(29)-C(30)	119.8(2)
С(28)-С(29)-Н(16)	120.1
С(30)-С(29)-Н(16)	120.1
C(29)-C(30)-C(25)	119.9(2)
С(29)-С(30)-Н(15)	120.1
С(25)-С(30)-Н(15)	120.1
P(2)-C(31)-H(20)	109.5
P(2)-C(31)-H(22)	109.5

H(20)-C(31)-H(22)	109.5
P(2)-C(31)-H(21)	109.5
H(20)-C(31)-H(21)	109.5
H(22)-C(31)-H(21)	109.5
C(33)-C(32)-C(16)	119.9(2)
C(33)-C(32)-H(31)	120.1
C(16)-C(32)-H(31)	120.1
C(32)-C(33)-C(13)	120.2(2)
C(32)-C(33)-H(30)	119.9
C(13)-C(33)-H(30)	119.9
F(3)-C(34)-F(2)	106.9(4)
F(3)-C(34)-F(1)	107.6(3)
F(2)-C(34)-F(1)	106.8(4)
F(3)-C(34)-S(1)	111.5(3)
F(2)-C(34)-S(1)	112.1(3)
F(1)-C(34)-S(1)	111.7(2)
F(4)-C(35)-F(5)	107.5(2)
F(4)-C(35)-F(6)	108.9(2)
F(5)-C(35)-F(6)	106.0(2)
F(4)-C(35)-S(2)	112.13(17)
F(5)-C(35)-S(2)	111.84(18)
F(6)-C(35)-S(2)	110.18(19)

Table 4. Crystal data and structure refinement for 4.

Identification code	ortho	
Empirical formula	$C_{31}H_{27}F_4NP_2$	
Formula weight	551.47	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P21212	
Unit cell dimensions	a = 8.716(2) Å	α= 90°.
	b = 23.262(6) Å	β= 90°.
	c = 6.4438(14) Å	$\gamma = 90^{\circ}$.
Volume	1306.6(5) Å ³	
Ζ	2	
Density (calculated)	1.402 Mg/m ³	
Absorption coefficient	0.217 mm ⁻¹	
F(000)	572	
Crystal size	0.080 x 0.060 x 0.060 mm ³	
Theta range for data collection	2.495 to 27.490°.	
Index ranges	-11<=h<=10, -29<=k<=30, -6<=l<=8	
Reflections collected	12003	
Independent reflections	3004 [R(int) = 0.0938]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3004 / 0 / 173	
Goodness-of-fit on F ²	1.012	
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.0849	
R indices (all data)	R1 = 0.0916, wR2 = 0.0960	
Absolute structure parameter	-0.07(12)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.475 and -0.357 e.Å ⁻³	

	X	у	Z	U(eq)
P(1)	1761(1)	971(1)	7045(2)	18(1)
F(1)	2543(2)	978(1)	4677(3)	27(1)
F(2)	1074(2)	955(1)	9486(3)	23(1)
C(1)	2294(4)	216(2)	7335(6)	22(1)
C(11)	-157(5)	1094(2)	6003(6)	19(1)
C(12)	-1336(4)	1298(2)	7276(6)	22(1)
C(13)	-2813(5)	1357(2)	6513(7)	28(1)
C(14)	-3139(6)	1209(2)	4494(7)	32(1)
C(15)	-1979(5)	1018(2)	3204(7)	27(1)
C(16)	-489(5)	958(2)	3943(6)	22(1)
C(21)	2952(4)	1584(2)	7761(6)	19(1)
C(22)	3253(5)	2011(2)	6297(6)	24(1)
C(23)	4131(5)	2486(2)	6788(8)	31(1)
C(24)	4746(6)	2542(2)	8758(7)	34(1)
C(25)	4468(5)	2119(2)	10238(7)	31(1)
C(26)	3551(5)	1652(2)	9756(6)	22(1)
N(1)	5000	0	7533(7)	19(1)
C(31)	3714(5)	107(2)	8616(6)	20(1)
C(32)	3679(5)	119(2)	10776(6)	24(1)
C(33)	5000	0	11854(10)	24(1)

Table 5. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for ortho. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-F(1)	1.671(2)
P(1)-F(2)	1.683(2)
P(1)-C(21)	1.823(4)
P(1)-C(11)	1.824(4)
P(1)-C(1)	1.826(4)
C(1)-C(31)	1.509(5)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(11)-C(16)	1.395(5)
C(11)-C(12)	1.398(5)
C(12)-C(13)	1.385(6)
C(12)-H(12)	0.9500
C(13)-C(14)	1.375(6)
C(13)-H(13)	0.9500
C(14)-C(15)	1.382(6)
C(14)-H(14)	0.9500
C(15)-C(16)	1.390(6)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(21)-C(22)	1.395(5)
C(21)-C(26)	1.397(6)
C(22)-C(23)	1.381(6)
C(22)-H(22)	0.9500
C(23)-C(24)	1.384(6)
C(23)-H(23)	0.9500
C(24)-C(25)	1.392(6)
C(24)-H(24)	0.9500
C(25)-C(26)	1.383(6)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
N(1)-C(31)#1	1.344(5)
N(1)-C(31)	1.344(5)
C(31)-C(32)	1.393(5)
C(32)-C(33)	1.372(5)

Table 6. Bond lengths [Å] and angles [°] for ortho.

C(32)-H(32)	0.9500
C(33)-C(32)#1	1.372(5)
C(33)-H(33)	0.9500
F(1)-P(1)-F(2)	176.71(13)
F(1)-P(1)-C(21)	89.50(16)
F(2)-P(1)-C(21)	89.07(16)
F(1)-P(1)-C(11)	92.06(15)
F(2)-P(1)-C(11)	91.22(15)
C(21)-P(1)-C(11)	119.48(19)
F(1)-P(1)-C(1)	89.95(17)
F(2)-P(1)-C(1)	88.48(16)
C(21)-P(1)-C(1)	125.57(19)
C(11)-P(1)-C(1)	114.94(18)
C(31)-C(1)-P(1)	115.2(3)
C(31)-C(1)-H(1A)	108.5
P(1)-C(1)-H(1A)	108.5
C(31)-C(1)-H(1B)	108.5
P(1)-C(1)-H(1B)	108.5
H(1A)-C(1)-H(1B)	107.5
C(16)-C(11)-C(12)	118.9(4)
C(16)-C(11)-P(1)	120.3(3)
C(12)-C(11)-P(1)	120.7(3)
C(13)-C(12)-C(11)	120.6(4)
С(13)-С(12)-Н(12)	119.7
С(11)-С(12)-Н(12)	119.7
C(14)-C(13)-C(12)	120.2(4)
С(14)-С(13)-Н(13)	119.9
С(12)-С(13)-Н(13)	119.9
C(13)-C(14)-C(15)	119.9(4)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	120.6(4)
C(14)-C(15)-H(15)	119.7
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-C(11)	119.8(4)

C(15)-C(16)-H(16)	120.1
С(11)-С(16)-Н(16)	120.1
C(22)-C(21)-C(26)	118.1(4)
C(22)-C(21)-P(1)	119.6(3)
C(26)-C(21)-P(1)	122.3(3)
C(23)-C(22)-C(21)	121.3(4)
С(23)-С(22)-Н(22)	119.4
C(21)-C(22)-H(22)	119.4
C(22)-C(23)-C(24)	120.0(4)
C(22)-C(23)-H(23)	120.0
C(24)-C(23)-H(23)	120.0
C(23)-C(24)-C(25)	119.6(4)
C(23)-C(24)-H(24)	120.2
C(25)-C(24)-H(24)	120.2
C(26)-C(25)-C(24)	120.1(4)
C(26)-C(25)-H(25)	119.9
C(24)-C(25)-H(25)	119.9
C(25)-C(26)-C(21)	120.7(4)
C(25)-C(26)-H(26)	119.6
C(21)-C(26)-H(26)	119.6
C(31)#1-N(1)-C(31)	117.4(5)
N(1)-C(31)-C(32)	122.8(4)
N(1)-C(31)-C(1)	115.5(3)
C(32)-C(31)-C(1)	121.7(4)
C(33)-C(32)-C(31)	118.9(4)
C(33)-C(32)-H(32)	120.6
C(31)-C(32)-H(32)	120.6
C(32)-C(33)-C(32)#1	119.2(6)
С(32)-С(33)-Н(33)	120.4
C(32)#1-C(33)-H(33)	120.4

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,z

Table 7. Crystal data and structure refinement for **5**.

Identification code	q1		
Empirical formula	$C_{31}H_{27}B_2F_{10}NP_2$	$C_{31} \ H_{27} \ B_2 \ F_{10} \ N \ P_2$	
Formula weight	687.09	687.09	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 28.205(3) Å	$\alpha = 90^{\circ}$.	
	b = 15.0893(11) Å	β= 130.351(7)°.	
	c = 19.149(2) Å	$\gamma = 90^{\circ}$.	
Volume	6210.9(11) Å ³		
Z	8		
Density (calculated)	1.470 Mg/m ³		
Absorption coefficient	0.224 mm ⁻¹		
F(000)	2800	2800	
Crystal size	0.200 x 0.200 x 0.100 m	0.200 x 0.200 x 0.100 mm ³	
Theta range for data collection	2.129 to 27.721°.	2.129 to 27.721°.	
Index ranges	-35<=h<=36, -19<=k<=	-35<=h<=36, -19<=k<=19, -24<=l<=24	
Reflections collected	49190	49190	
Independent reflections	7222 [R(int) = 0.0474]	7222 [R(int) = 0.0474]	
Completeness to theta = 25.242°	99.9 %	99.9 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	7222 / 0 / 416	7222 / 0 / 416	
Goodness-of-fit on F ²	1.020		
Final R indices [I>2sigma(I)]	R1 = 0.0414, WR2 = 0.09	R1 = 0.0414, $wR2 = 0.0931$	
R indices (all data)	R1 = 0.0693, wR2 = 0.10	R1 = 0.0693, $wR2 = 0.1048$	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.361 and -0.388 e.Å ⁻³		

	х	у	Z	U(eq)
P(1)	1468(1)	4291(1)	4677(1)	26(1)
P(2)	702(1)	1996(1)	6276(1)	24(1)
F(1)	1622(1)	4543(1)	4059(1)	41(1)
F(2)	1138(1)	1717(1)	6083(1)	35(1)
F(11)	248(1)	1378(1)	3251(1)	71(1)
F(12)	452(1)	2432(1)	2642(1)	82(1)
F(21)	476(1)	6014(1)	2714(1)	56(1)
F(22)	204(1)	7066(1)	3240(1)	55(1)
F(31)	2828(1)	-1249(1)	6103(1)	50(1)
F(32)	2744(1)	-1347(1)	7195(1)	39(1)
F(33)	3349(1)	-285(1)	7293(1)	36(1)
F(34)	2306(1)	-191(1)	6198(1)	46(1)
B(1)	0	1894(2)	2500	37(1)
B(2)	0	6551(2)	2500	29(1)
B(3)	2808(1)	-768(2)	6693(2)	28(1)
N(1)	654(1)	3725(1)	5061(1)	22(1)
C(1)	645(1)	4175(1)	3842(1)	29(1)
C(2)	757(1)	3178(1)	6343(1)	26(1)
C(101)	370(1)	3594(1)	5406(1)	24(1)
C(102)	-250(1)	3802(1)	4925(1)	31(1)
C(103)	-589(1)	4170(1)	4064(2)	37(1)
C(104)	-305(1)	4311(1)	3701(1)	33(1)
C(105)	315(1)	4072(1)	4218(1)	25(1)
C(201)	989(1)	1492(1)	7311(1)	28(1)
C(202)	788(1)	652(2)	7318(2)	42(1)
C(203)	1062(1)	241(2)	8151(2)	52(1)
C(204)	1533(1)	656(2)	8952(2)	44(1)
C(205)	1730(1)	1483(2)	8948(1)	44(1)
C(206)	1457(1)	1914(2)	8132(1)	38(1)
C(301)	-37(1)	1610(1)	5315(1)	26(1)
C(302)	-166(1)	1552(1)	4480(1)	33(1)

Table 8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for q1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(303)	-756(1)	1321(2)	3704(1)	43(1)
C(304)	-1209(1)	1135(2)	3758(2)	48(1)
C(305)	-1082(1)	1191(2)	4585(2)	45(1)
C(306)	-497(1)	1441(1)	5369(1)	34(1)
C(401)	1896(1)	3323(1)	5260(1)	27(1)
C(402)	2546(1)	3386(2)	5882(2)	35(1)
C(403)	2900(1)	2631(2)	6325(2)	40(1)
C(404)	2607(1)	1832(2)	6157(2)	38(1)
C(405)	1968(1)	1761(1)	5531(2)	38(1)
C(406)	1607(1)	2512(1)	5076(2)	31(1)
C(501)	1727(1)	5208(1)	5414(1)	27(1)
C(502)	1619(1)	6058(1)	5046(2)	37(1)
C(503)	1830(1)	6778(2)	5620(2)	48(1)
C(504)	2151(1)	6661(2)	6547(2)	46(1)
C(505)	2258(1)	5825(2)	6908(2)	40(1)
C(506)	2042(1)	5093(1)	6342(1)	32(1)

P(1)-F(1)	1.5504(12)
P(1)-C(401)	1.760(2)
P(1)-C(501)	1.762(2)
P(1)-C(1)	1.780(2)
P(2)-F(2)	1.5512(12)
P(2)-C(201)	1.756(2)
P(2)-C(301)	1.7621(19)
P(2)-C(2)	1.787(2)
F(11)-B(1)	1.364(3)
F(12)-B(1)	1.381(3)
F(21)-B(2)	1.383(2)
F(22)-B(2)	1.374(2)
F(31)-B(3)	1.374(3)
F(32)-B(3)	1.395(3)
F(33)-B(3)	1.381(2)
F(34)-B(3)	1.387(2)
B(1)-F(11)#1	1.364(3)
B(1)-F(12)#1	1.381(3)
B(2)-F(22)#1	1.374(2)
B(2)-F(21)#1	1.383(2)
N(1)-C(105)	1.339(2)
N(1)-C(101)	1.342(2)
C(1)-C(105)	1.508(3)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(101)	1.508(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(101)-C(102)	1.387(3)
C(102)-C(103)	1.378(3)
C(102)-H(102)	0.9500
C(103)-C(104)	1.376(3)
С(103)-Н(103)	0.9500
C(104)-C(105)	1.387(3)

Table 9. Bond lengths [Å] and angles [°] for q1.

.

C(104)-H(104)	0.9500
C(201)-C(206)	1.390(3)
C(201)-C(202)	1.394(3)
C(202)-C(203)	1.388(3)
С(202)-Н(202)	0.9500
C(203)-C(204)	1.368(3)
С(203)-Н(203)	0.9500
C(204)-C(205)	1.367(3)
C(204)-H(204)	0.9500
C(205)-C(206)	1.378(3)
C(205)-H(205)	0.9500
C(206)-H(206)	0.9500
C(301)-C(306)	1.389(3)
C(301)-C(302)	1.395(3)
C(302)-C(303)	1.377(3)
C(302)-H(302)	0.9500
C(303)-C(304)	1.376(3)
C(303)-H(303)	0.9500
C(304)-C(305)	1.381(3)
C(304)-H(304)	0.9500
C(305)-C(306)	1.383(3)
C(305)-H(305)	0.9500
C(306)-H(306)	0.9500
C(401)-C(406)	1.384(3)
C(401)-C(402)	1.400(3)
C(402)-C(403)	1.384(3)
С(402)-Н(402)	0.9500
C(403)-C(404)	1.376(3)
C(403)-H(403)	0.9500
C(404)-C(405)	1.379(3)
C(404)-H(404)	0.9500
C(405)-C(406)	1.390(3)
C(405)-H(405)	0.9500
C(406)-H(406)	0.9500
C(501)-C(506)	1.392(3)
C(501)-C(502)	1.397(3)

C(502)-C(503)	1.377(3)
С(502)-Н(502)	0.9500
C(503)-C(504)	1.385(4)
С(503)-Н(503)	0.9500
C(504)-C(505)	1.375(3)
C(504)-H(504)	0.9500
C(505)-C(506)	1.382(3)
С(505)-Н(505)	0.9500
С(506)-Н(506)	0.9500
F(1)-P(1)-C(401)	105.69(8)
F(1)-P(1)-C(501)	104.06(8)
C(401)-P(1)-C(501)	112.73(10)
F(1)-P(1)-C(1)	100.69(8)
C(401)-P(1)-C(1)	116.65(10)
C(501)-P(1)-C(1)	114.86(9)
F(2)-P(2)-C(201)	107.10(8)
F(2)-P(2)-C(301)	104.28(8)
C(201)-P(2)-C(301)	113.83(9)
F(2)-P(2)-C(2)	104.06(8)
C(201)-P(2)-C(2)	113.26(9)
C(301)-P(2)-C(2)	113.18(9)
F(11)-B(1)-F(11)#1	110.3(3)
F(11)-B(1)-F(12)#1	108.68(10)
F(11)#1-B(1)-F(12)#1	110.48(12)
F(11)-B(1)-F(12)	110.48(12)
F(11)#1-B(1)-F(12)	108.68(10)
F(12)#1-B(1)-F(12)	108.2(3)
F(22)-B(2)-F(22)#1	111.1(3)
F(22)-B(2)-F(21)#1	108.40(8)
F(22)#1-B(2)-F(21)#1	110.29(9)
F(22)-B(2)-F(21)	110.29(9)
F(22)#1-B(2)-F(21)	108.40(8)
F(21)#1-B(2)-F(21)	108.3(3)
F(31)-B(3)-F(33)	110.56(18)
F(31)-B(3)-F(34)	109.76(17)

F(33)-B(3)-F(34)	109.09(17)
F(31)-B(3)-F(32)	109.14(17)
F(33)-B(3)-F(32)	108.79(16)
F(34)-B(3)-F(32)	109.47(18)
C(105)-N(1)-C(101)	117.48(16)
C(105)-C(1)-P(1)	115.48(13)
C(105)-C(1)-H(1A)	108.4
P(1)-C(1)-H(1A)	108.4
C(105)-C(1)-H(1B)	108.4
P(1)-C(1)-H(1B)	108.4
H(1A)-C(1)-H(1B)	107.5
C(101)-C(2)-P(2)	111.57(13)
C(101)-C(2)-H(2A)	109.3
P(2)-C(2)-H(2A)	109.3
C(101)-C(2)-H(2B)	109.3
P(2)-C(2)-H(2B)	109.3
H(2A)-C(2)-H(2B)	108.0
N(1)-C(101)-C(102)	122.65(18)
N(1)-C(101)-C(2)	116.42(16)
C(102)-C(101)-C(2)	120.91(17)
C(103)-C(102)-C(101)	118.98(19)
С(103)-С(102)-Н(102)	120.5
С(101)-С(102)-Н(102)	120.5
C(104)-C(103)-C(102)	119.14(19)
С(104)-С(103)-Н(103)	120.4
С(102)-С(103)-Н(103)	120.4
C(103)-C(104)-C(105)	118.44(19)
С(103)-С(104)-Н(104)	120.8
C(105)-C(104)-H(104)	120.8
N(1)-C(105)-C(104)	123.30(18)
N(1)-C(105)-C(1)	115.74(16)
C(104)-C(105)-C(1)	120.94(17)
C(206)-C(201)-C(202)	120.00(19)
C(206)-C(201)-P(2)	119.01(16)
C(202)-C(201)-P(2)	120.81(15)
C(203)-C(202)-C(201)	119.3(2)

С(203)-С(202)-Н(202)	120.3
С(201)-С(202)-Н(202)	120.3
C(204)-C(203)-C(202)	119.9(2)
С(204)-С(203)-Н(203)	120.0
С(202)-С(203)-Н(203)	120.0
C(205)-C(204)-C(203)	120.9(2)
C(205)-C(204)-H(204)	119.6
C(203)-C(204)-H(204)	119.6
C(204)-C(205)-C(206)	120.5(2)
С(204)-С(205)-Н(205)	119.8
С(206)-С(205)-Н(205)	119.8
C(205)-C(206)-C(201)	119.4(2)
С(205)-С(206)-Н(206)	120.3
С(201)-С(206)-Н(206)	120.3
C(306)-C(301)-C(302)	120.72(18)
C(306)-C(301)-P(2)	120.97(15)
C(302)-C(301)-P(2)	118.09(15)
C(303)-C(302)-C(301)	119.2(2)
С(303)-С(302)-Н(302)	120.4
С(301)-С(302)-Н(302)	120.4
C(304)-C(303)-C(302)	120.2(2)
С(304)-С(303)-Н(303)	119.9
С(302)-С(303)-Н(303)	119.9
C(303)-C(304)-C(305)	120.7(2)
C(303)-C(304)-H(304)	119.7
C(305)-C(304)-H(304)	119.7
C(304)-C(305)-C(306)	120.1(2)
С(304)-С(305)-Н(305)	119.9
С(306)-С(305)-Н(305)	119.9
C(305)-C(306)-C(301)	119.02(19)
С(305)-С(306)-Н(306)	120.5
С(301)-С(306)-Н(306)	120.5
C(406)-C(401)-C(402)	120.52(18)
C(406)-C(401)-P(1)	121.54(15)
C(402)-C(401)-P(1)	117.83(16)
C(403)-C(402)-C(401)	119.6(2)

C(403)-C(402)-H(402)	120.2
C(401)-C(402)-H(402)	120.2
C(404)-C(403)-C(402)	119.4(2)
С(404)-С(403)-Н(403)	120.3
С(402)-С(403)-Н(403)	120.3
C(403)-C(404)-C(405)	121.4(2)
C(403)-C(404)-H(404)	119.3
C(405)-C(404)-H(404)	119.3
C(404)-C(405)-C(406)	119.8(2)
C(404)-C(405)-H(405)	120.1
C(406)-C(405)-H(405)	120.1
C(401)-C(406)-C(405)	119.29(19)
C(401)-C(406)-H(406)	120.4
C(405)-C(406)-H(406)	120.4
C(506)-C(501)-C(502)	120.62(19)
C(506)-C(501)-P(1)	121.02(15)
C(502)-C(501)-P(1)	118.35(16)
C(503)-C(502)-C(501)	118.7(2)
С(503)-С(502)-Н(502)	120.6
С(501)-С(502)-Н(502)	120.6
C(502)-C(503)-C(504)	120.6(2)
С(502)-С(503)-Н(503)	119.7
С(504)-С(503)-Н(503)	119.7
C(505)-C(504)-C(503)	120.6(2)
C(505)-C(504)-H(504)	119.7
C(503)-C(504)-H(504)	119.7
C(504)-C(505)-C(506)	119.8(2)
C(504)-C(505)-H(505)	120.1
C(506)-C(505)-H(505)	120.1
C(505)-C(506)-C(501)	119.6(2)
C(505)-C(506)-H(506)	120.2
C(501)-C(506)-H(506)	120.2

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2

Table 10. Crystal data and structure refinement fo	r 6 .	
Identification code	pre1	
Empirical formula	$C_{66}H_{54}F_{16}N_2O_{12}P_4S_4$	
Formula weight	1623.23	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 23.497(2) Å	α=90°.
	b = 16.0412(15) Å	β= 91.850(3)°.
	c = 18.2355(14) Å	$\gamma = 90^{\circ}$.
Volume	6869.9(10) Å ³	
Ζ	4	
Density (calculated)	1.569 Mg/m ³	
Absorption coefficient	0.339 mm ⁻¹	
F(000)	3312	
Crystal size	0.080 x 0.090 x 0.090 mm ³	
Theta range for data collection	0.867 to 27.514°.	
Index ranges	-30<=h<=30, -20<=k<=20, -17	l<=l<=23
Reflections collected	62904	
Independent reflections	15715 [R(int) = 0.0445]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	15715 / 85 / 1001	
Goodness-of-fit on F ²	1.033	
Final R indices [I>2sigma(I)]	R1 = 0.0472, wR2 = 0.1098	
R indices (all data)	R1 = 0.0733, wR2 = 0.1211	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.547 and -0.629 e.Å ⁻³	

	Х	у	Z	U(eq)
P(4)	8945(1)	2767(1)	10918(1)	20(1)
S(2)	10205(1)	3422(1)	13522(1)	28(1)
S(3)	7860(1)	1019(1)	13761(1)	23(1)
S(5)	7044(1)	8875(1)	18826(1)	23(1)
P(1)	6400(1)	11844(1)	18735(1)	21(1)
P(2)	4000(1)	12411(1)	19175(1)	23(1)
P(3)	11365(1)	3240(1)	11283(1)	19(1)
F(1)	6967(1)	11866(1)	18316(1)	31(1)
F(2)	4352(1)	12702(1)	18521(1)	32(1)
F(3)	9363(1)	2495(1)	11543(1)	31(1)
F(4)	11955(1)	3235(1)	11697(1)	29(1)
F(5)	10164(1)	4834(1)	14236(1)	40(1)
F(6)	10263(1)	3749(1)	14924(1)	66(1)
F(7)	9455(1)	4026(1)	14401(1)	57(1)
F(8)	7691(1)	1869(1)	12537(1)	52(1)
F(9)	8324(1)	2387(1)	13271(1)	67(1)
F(10)	8509(1)	1286(2)	12650(1)	69(1)
F(14)	6580(1)	8761(2)	17511(1)	74(1)
F(15)	7431(1)	8295(1)	17599(1)	59(1)
F(16)	6751(1)	7579(1)	18028(1)	62(1)
O(1)	10062(1)	2583(1)	13742(1)	37(1)
O(2)	10808(1)	3588(1)	13464(1)	39(1)
O(3)	9866(1)	3759(1)	12924(1)	41(1)
O(4)	8378(1)	883(1)	14197(1)	36(1)
O(5)	7647(1)	289(1)	13389(1)	42(1)
O(6)	7445(1)	1526(1)	14111(1)	37(1)
O(10)	6475(1)	8898(1)	19110(1)	34(1)
O(11)	7431(1)	8338(2)	19229(1)	42(1)
O(12)	7266(1)	9677(1)	18624(1)	38(1)
N(1)	5254(1)	11304(1)	19023(1)	21(1)
N(2)	10197(1)	3812(1)	10943(1)	18(1)

Table 11. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for pre1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(44A)	6947(1)	11204(2)	21075(1)	29(1)
C(43A)	6821(1)	10584(2)	20572(1)	26(1)
C(42A)	6628(1)	10790(2)	19869(1)	24(1)
C(41A)	6581(1)	11627(2)	19666(1)	20(1)
C(111)	6059(1)	10969(2)	18294(1)	25(1)
C(11A)	5517(1)	10702(2)	18650(1)	22(1)
C(15A)	4765(1)	11103(2)	19342(1)	24(1)
C(222)	4473(1)	11800(2)	19746(1)	27(1)
C(31A)	3788(1)	13326(2)	19633(1)	24(1)
C(32A)	3878(1)	14107(2)	19317(2)	31(1)
C(33A)	3724(1)	14818(2)	19696(2)	38(1)
C(34A)	3480(1)	14754(2)	20377(2)	37(1)
C(51A)	6092(1)	12839(2)	18574(1)	25(1)
C(56A)	5734(1)	13202(2)	19074(2)	28(1)
C(55A)	5487(1)	13967(2)	18917(2)	38(1)
C(54A)	5595(2)	14365(2)	18265(2)	49(1)
C(53A)	5953(2)	14009(2)	17769(2)	49(1)
C(52A)	6207(1)	13241(2)	17913(2)	37(1)
C(45A)	6892(1)	12033(2)	20880(2)	32(1)
C(46A)	6715(1)	12256(2)	20172(1)	27(1)
C(12A)	5311(1)	9891(2)	18585(2)	30(1)
C(13A)	4812(1)	9694(2)	18920(2)	36(1)
C(14A)	4533(1)	10310(2)	19304(2)	32(1)
C(21A)	3422(1)	11829(2)	18774(1)	22(1)
C(22A)	3527(1)	11274(2)	18198(1)	27(1)
C(23A)	3081(1)	10831(2)	17882(1)	30(1)
C(24A)	2530(1)	10926(2)	18139(2)	30(1)
C(25A)	2430(1)	11468(2)	18709(2)	32(1)
C(26A)	2873(1)	11927(2)	19030(2)	26(1)
C(36A)	3548(1)	13256(2)	20321(2)	29(1)
C(35A)	3394(1)	13980(2)	20687(2)	34(1)
C(24B)	7635(2)	4361(2)	12038(2)	42(1)
C(23B)	7512(1)	4033(2)	11356(2)	42(1)
C(22B)	7916(1)	3562(2)	11001(2)	32(1)
C(21B)	8443(1)	3415(2)	11347(1)	23(1)
C(444)	9358(1)	3312(2)	10266(1)	22(1)

C(15B)	9687(1)	4019(2)	10632(1)	20(1)
C(11B)	10495(1)	4414(2)	11290(1)	19(1)
C(333)	11045(1)	4144(2)	11672(1)	21(1)
C(51B)	11531(1)	3374(2)	10352(1)	21(1)
C(52B)	11979(1)	3924(2)	10201(2)	31(1)
C(53B)	12121(1)	4065(2)	9486(2)	37(1)
C(54B)	11820(1)	3677(2)	8918(2)	32(1)
C(34B)	8182(1)	366(2)	10017(2)	31(1)
C(33B)	8083(1)	1105(2)	9646(2)	31(1)
C(32B)	8314(1)	1849(2)	9908(2)	27(1)
C(31B)	8649(1)	1830(2)	10559(1)	21(1)
C(25B)	8158(2)	4235(2)	12376(2)	46(1)
C(26B)	8574(1)	3762(2)	12039(2)	36(1)
C(41B)	11045(1)	2277(2)	11492(1)	20(1)
C(42B)	10602(1)	2250(2)	11980(1)	24(1)
C(43B)	10398(1)	1485(2)	12209(2)	29(1)
C(44B)	10622(1)	755(2)	11941(2)	32(1)
C(45B)	11054(1)	787(2)	11442(2)	35(1)
C(46B)	11272(1)	1542(2)	11213(2)	30(1)
C(55B)	11376(1)	3135(2)	9059(2)	28(1)
C(56B)	11233(1)	2981(2)	9781(1)	25(1)
C(12B)	10312(1)	5237(2)	11323(1)	23(1)
C(13B)	9790(1)	5441(2)	11000(2)	26(1)
C(14B)	9465(1)	4822(2)	10655(1)	25(1)
C(36B)	8751(1)	1079(2)	10929(2)	27(1)
C(35B)	8518(1)	349(2)	10652(2)	32(1)
C(63)	10017(1)	4042(2)	14311(2)	33(1)
C(64)	8107(1)	1676(2)	13020(2)	37(1)
C(66)	6946(1)	8349(2)	17948(2)	36(1)
C(1S)	5114(1)	7949(2)	13150(2)	32(1)
S(1A)	4600(1)	8186(1)	13815(1)	28(1)
O(1A)	4896(3)	8788(4)	14277(3)	78(2)
O(2A)	4114(3)	8500(4)	13392(3)	66(2)
O(3A)	4507(1)	7398(2)	14150(2)	49(1)
F(11A)	5589(1)	7655(4)	13423(2)	77(1)
F(12A)	5236(2)	8600(2)	12719(2)	78(1)

F(13A)	4928(2)	7381(3)	12666(2)	71(1)
S(1B)	4569(2)	8573(5)	13720(3)	45(1)
O(1B)	4630(6)	9386(7)	13425(7)	73(4)
O(2B)	4070(11)	8263(17)	13468(16)	88(6)
O(3B)	4774(9)	8439(12)	14456(9)	74(5)
F(11B)	5147(10)	7205(7)	13413(7)	131(8)
F(12B)	4966(4)	7936(9)	12508(4)	52(3)
F(13B)	5585(4)	8388(11)	13228(9)	93(5)

P(4)-F(3)	1.5432(16)
P(4)-C(31B)	1.773(3)
P(4)-C(21B)	1.774(3)
P(4)-C(444)	1.788(2)
S(2)-O(3)	1.435(2)
S(2)-O(1)	1.447(2)
S(2)-O(2)	1.450(2)
S(2)-C(63)	1.815(3)
S(3)-O(6)	1.434(2)
S(3)-O(5)	1.436(2)
S(3)-O(4)	1.448(2)
S(3)-C(64)	1.822(3)
S(5)-O(11)	1.437(2)
S(5)-O(12)	1.441(2)
S(5)-O(10)	1.4506(19)
S(5)-C(66)	1.817(3)
P(1)-F(1)	1.5572(15)
P(1)-C(41A)	1.772(2)
P(1)-C(51A)	1.774(3)
P(1)-C(111)	1.794(3)
P(2)-F(2)	1.5442(16)
P(2)-C(31A)	1.769(3)
P(2)-C(21A)	1.784(3)
P(2)-C(222)	1.792(3)
P(3)-F(4)	1.5567(15)
P(3)-C(41B)	1.765(3)
P(3)-C(51B)	1.767(3)
P(3)-C(333)	1.791(2)
F(5)-C(63)	1.324(3)
F(6)-C(63)	1.328(3)
F(7)-C(63)	1.336(4)
F(8)-C(64)	1.332(3)
F(9)-C(64)	1.326(4)
F(10)-C(64)	1.336(4)

Table 12. Bond lengths [Å] and angles [°] for pre1.

F(14)-C(66)	1.331(4)
F(15)-C(66)	1.326(4)
F(16)-C(66)	1.327(4)
N(1)-C(15A)	1.342(3)
N(1)-C(11A)	1.343(3)
N(2)-C(11B)	1.340(3)
N(2)-C(15B)	1.351(3)
C(44A)-C(43A)	1.379(4)
C(44A)-C(45A)	1.381(4)
C(44A)-H(44A)	0.9500
C(43A)-C(42A)	1.385(4)
C(43A)-H(43A)	0.9500
C(42A)-C(41A)	1.396(4)
C(42A)-H(42A)	0.9500
C(41A)-C(46A)	1.396(4)
C(111)-C(11A)	1.510(4)
C(111)-H(11A)	0.9900
C(111)-H(11B)	0.9900
C(11A)-C(12A)	1.393(4)
C(15A)-C(14A)	1.384(4)
C(15A)-C(222)	1.516(4)
C(222)-H(22A)	0.9900
C(222)-H(22B)	0.9900
C(31A)-C(36A)	1.396(4)
C(31A)-C(32A)	1.398(4)
C(32A)-C(33A)	1.388(4)
C(32A)-H(32A)	0.9500
C(33A)-C(34A)	1.389(5)
C(33A)-H(33A)	0.9500
C(34A)-C(35A)	1.380(4)
C(34A)-H(34A)	0.9500
C(51A)-C(56A)	1.389(4)
C(51A)-C(52A)	1.401(4)
C(56A)-C(55A)	1.384(4)
C(56A)-H(56A)	0.9500
C(55A)-C(54A)	1.381(5)

C(55A)-H(55A)	0.9500
C(54A)-C(53A)	1.380(5)
C(54A)-H(54A)	0.9500
C(53A)-C(52A)	1.390(5)
C(53A)-H(53A)	0.9500
C(52A)-H(52A)	0.9500
C(45A)-C(46A)	1.389(4)
C(45A)-H(45A)	0.9500
C(46A)-H(46A)	0.9500
C(12A)-C(13A)	1.377(4)
C(12A)-H(12A)	0.9500
C(13A)-C(14A)	1.387(4)
C(13A)-H(13A)	0.9500
C(14A)-H(14A)	0.9500
C(21A)-C(26A)	1.395(4)
C(21A)-C(22A)	1.405(4)
C(22A)-C(23A)	1.378(4)
C(22A)-H(22C)	0.9500
C(23A)-C(24A)	1.398(4)
C(23A)-H(23A)	0.9500
C(24A)-C(25A)	1.381(4)
C(24A)-H(24A)	0.9500
C(25A)-C(26A)	1.390(4)
C(25A)-H(25A)	0.9500
C(26A)-H(26A)	0.9500
C(36A)-C(35A)	1.394(4)
C(36A)-H(36A)	0.9500
C(35A)-H(35A)	0.9500
C(24B)-C(23B)	1.371(5)
C(24B)-C(25B)	1.372(5)
C(24B)-H(24B)	0.9500
C(23B)-C(22B)	1.390(4)
C(23B)-H(23B)	0.9500
C(22B)-C(21B)	1.391(4)
C(22B)-H(22D)	0.9500
C(21B)-C(26B)	1.403(4)

C(444)-C(15B)	1.516(3)
C(444)-H(44B)	0.9900
C(444)-H(44C)	0.9900
C(15B)-C(14B)	1.391(3)
C(11B)-C(12B)	1.390(3)
C(11B)-C(333)	1.512(3)
C(333)-H(33B)	0.9900
С(333)-Н(33С)	0.9900
C(51B)-C(56B)	1.387(4)
C(51B)-C(52B)	1.408(4)
C(52B)-C(53B)	1.375(4)
C(52B)-H(52B)	0.9500
C(53B)-C(54B)	1.382(4)
C(53B)-H(53B)	0.9500
C(54B)-C(55B)	1.389(4)
C(54B)-H(54B)	0.9500
C(34B)-C(33B)	1.381(4)
C(34B)-C(35B)	1.381(4)
C(34B)-H(34B)	0.9500
C(33B)-C(32B)	1.390(4)
C(33B)-H(33D)	0.9500
C(32B)-C(31B)	1.402(4)
C(32B)-H(32B)	0.9500
C(31B)-C(36B)	1.399(4)
C(25B)-C(26B)	1.394(5)
C(25B)-H(25B)	0.9500
C(26B)-H(26B)	0.9500
C(41B)-C(42B)	1.392(4)
C(41B)-C(46B)	1.397(4)
C(42B)-C(43B)	1.386(4)
C(42B)-H(42B)	0.9500
C(43B)-C(44B)	1.380(4)
C(43B)-H(43B)	0.9500
C(44B)-C(45B)	1.384(4)
C(44B)-H(44D)	0.9500
C(45B)-C(46B)	1.385(4)

C(45B)-H(45B)	0.9500
C(46B)-H(46B)	0.9500
C(55B)-C(56B)	1.392(4)
C(55B)-H(55B)	0.9500
C(56B)-H(56B)	0.9500
C(12B)-C(13B)	1.383(4)
C(12B)-H(12B)	0.9500
C(13B)-C(14B)	1.391(4)
C(13B)-H(13B)	0.9500
C(14B)-H(14B)	0.9500
C(36B)-C(35B)	1.382(4)
C(36B)-H(36B)	0.9500
C(35B)-H(35B)	0.9500
C(1S)-F(12B)	1.211(9)
C(1S)-F(11B)	1.288(11)
C(1S)-F(11A)	1.295(4)
C(1S)-F(13B)	1.314(11)
C(1S)-F(13A)	1.333(4)
C(1S)-F(12A)	1.343(4)
C(1S)-S(1A)	1.780(3)
C(1S)-S(1B)	1.950(6)
S(1A)-O(3A)	1.425(4)
S(1A)-O(1A)	1.446(6)
S(1A)-O(2A)	1.446(6)
S(1B)-O(2B)	1.34(3)
S(1B)-O(1B)	1.421(14)
S(1B)-O(3B)	1.427(18)
F(3)-P(4)-C(31B)	105.48(11)
F(3)-P(4)-C(21B)	104.77(11)
C(31B)-P(4)-C(21B)	113.67(12)
F(3)-P(4)-C(444)	106.50(11)
C(31B)-P(4)-C(444)	112.61(12)
C(21B)-P(4)-C(444)	112.93(12)
O(3)-S(2)-O(1)	115.66(14)
O(3)-S(2)-O(2)	113.36(14)

O(1)-S(2)-O(2)	115.28(13)
O(3)-S(2)-C(63)	104.62(13)
O(1)-S(2)-C(63)	102.96(13)
O(2)-S(2)-C(63)	102.74(14)
O(6)-S(3)-O(5)	116.10(14)
O(6)-S(3)-O(4)	114.40(13)
O(5)-S(3)-O(4)	114.24(13)
O(6)-S(3)-C(64)	103.82(14)
O(5)-S(3)-C(64)	103.64(14)
O(4)-S(3)-C(64)	102.24(13)
O(11)-S(5)-O(12)	116.01(14)
O(11)-S(5)-O(10)	114.11(13)
O(12)-S(5)-O(10)	114.41(12)
O(11)-S(5)-C(66)	103.43(14)
O(12)-S(5)-C(66)	103.01(13)
O(10)-S(5)-C(66)	103.58(14)
F(1)-P(1)-C(41A)	107.03(10)
F(1)-P(1)-C(51A)	104.36(11)
C(41A)-P(1)-C(51A)	114.80(12)
F(1)-P(1)-C(111)	100.05(11)
C(41A)-P(1)-C(111)	111.50(12)
C(51A)-P(1)-C(111)	117.15(13)
F(2)-P(2)-C(31A)	106.27(11)
F(2)-P(2)-C(21A)	105.15(11)
C(31A)-P(2)-C(21A)	113.94(12)
F(2)-P(2)-C(222)	106.02(11)
C(31A)-P(2)-C(222)	111.01(13)
C(21A)-P(2)-C(222)	113.65(13)
F(4)-P(3)-C(41B)	105.66(10)
F(4)-P(3)-C(51B)	104.22(10)
C(41B)-P(3)-C(51B)	115.03(12)
F(4)-P(3)-C(333)	101.01(10)
C(41B)-P(3)-C(333)	115.80(12)
C(51B)-P(3)-C(333)	112.99(12)
C(15A)-N(1)-C(11A)	117.5(2)
C(11B)-N(2)-C(15B)	117.6(2)

C(43A)-C(44A)-C(45A)	120.4(2)
C(43A)-C(44A)-H(44A)	119.8
C(45A)-C(44A)-H(44A)	119.8
C(44A)-C(43A)-C(42A)	120.0(3)
C(44A)-C(43A)-H(43A)	120.0
C(42A)-C(43A)-H(43A)	120.0
C(43A)-C(42A)-C(41A)	119.7(2)
C(43A)-C(42A)-H(42A)	120.2
C(41A)-C(42A)-H(42A)	120.2
C(42A)-C(41A)-C(46A)	120.4(2)
C(42A)-C(41A)-P(1)	117.21(19)
C(46A)-C(41A)-P(1)	122.2(2)
C(11A)-C(111)-P(1)	113.47(17)
C(11A)-C(111)-H(11A)	108.9
P(1)-C(111)-H(11A)	108.9
С(11А)-С(111)-Н(11В)	108.9
P(1)-C(111)-H(11B)	108.9
H(11A)-C(111)-H(11B)	107.7
N(1)-C(11A)-C(12A)	123.3(2)
N(1)-C(11A)-C(111)	115.1(2)
C(12A)-C(11A)-C(111)	121.6(2)
N(1)-C(15A)-C(14A)	122.6(3)
N(1)-C(15A)-C(222)	116.1(2)
C(14A)-C(15A)-C(222)	121.2(2)
C(15A)-C(222)-P(2)	113.74(18)
C(15A)-C(222)-H(22A)	108.8
P(2)-C(222)-H(22A)	108.8
С(15А)-С(222)-Н(22В)	108.8
P(2)-C(222)-H(22B)	108.8
H(22A)-C(222)-H(22B)	107.7
C(36A)-C(31A)-C(32A)	121.0(3)
C(36A)-C(31A)-P(2)	119.0(2)
C(32A)-C(31A)-P(2)	120.0(2)
C(33A)-C(32A)-C(31A)	119.0(3)
C(33A)-C(32A)-H(32A)	120.5
C(31A)-C(32A)-H(32A)	120.5

C(32A)-C(33A)-C(34A)	120.4(3)
C(32A)-C(33A)-H(33A)	119.8
C(34A)-C(33A)-H(33A)	119.8
C(35A)-C(34A)-C(33A)	120.2(3)
C(35A)-C(34A)-H(34A)	119.9
C(33A)-C(34A)-H(34A)	119.9
C(56A)-C(51A)-C(52A)	120.7(3)
C(56A)-C(51A)-P(1)	121.4(2)
C(52A)-C(51A)-P(1)	117.9(2)
C(55A)-C(56A)-C(51A)	119.6(3)
C(55A)-C(56A)-H(56A)	120.2
C(51A)-C(56A)-H(56A)	120.2
C(54A)-C(55A)-C(56A)	120.1(3)
C(54A)-C(55A)-H(55A)	120.0
C(56A)-C(55A)-H(55A)	120.0
C(53A)-C(54A)-C(55A)	120.4(3)
C(53A)-C(54A)-H(54A)	119.8
C(55A)-C(54A)-H(54A)	119.8
C(54A)-C(53A)-C(52A)	120.7(3)
C(54A)-C(53A)-H(53A)	119.6
C(52A)-C(53A)-H(53A)	119.6
C(53A)-C(52A)-C(51A)	118.4(3)
C(53A)-C(52A)-H(52A)	120.8
C(51A)-C(52A)-H(52A)	120.8
C(44A)-C(45A)-C(46A)	120.7(3)
C(44A)-C(45A)-H(45A)	119.7
C(46A)-C(45A)-H(45A)	119.7
C(45A)-C(46A)-C(41A)	118.8(3)
C(45A)-C(46A)-H(46A)	120.6
C(41A)-C(46A)-H(46A)	120.6
C(13A)-C(12A)-C(11A)	118.4(3)
С(13А)-С(12А)-Н(12А)	120.8
C(11A)-C(12A)-H(12A)	120.8
C(12A)-C(13A)-C(14A)	118.8(3)
C(12A)-C(13A)-H(13A)	120.6
C(14A)-C(13A)-H(13A)	120.6

C(15A)-C(14A)-C(13A)	119.3(3)
C(15A)-C(14A)-H(14A)	120.3
C(13A)-C(14A)-H(14A)	120.3
C(26A)-C(21A)-C(22A)	120.5(2)
C(26A)-C(21A)-P(2)	120.2(2)
C(22A)-C(21A)-P(2)	119.3(2)
C(23A)-C(22A)-C(21A)	119.3(3)
C(23A)-C(22A)-H(22C)	120.3
C(21A)-C(22A)-H(22C)	120.3
C(22A)-C(23A)-C(24A)	120.3(3)
C(22A)-C(23A)-H(23A)	119.8
C(24A)-C(23A)-H(23A)	119.8
C(25A)-C(24A)-C(23A)	120.2(3)
C(25A)-C(24A)-H(24A)	119.9
C(23A)-C(24A)-H(24A)	119.9
C(24A)-C(25A)-C(26A)	120.4(3)
C(24A)-C(25A)-H(25A)	119.8
C(26A)-C(25A)-H(25A)	119.8
C(25A)-C(26A)-C(21A)	119.3(3)
C(25A)-C(26A)-H(26A)	120.4
C(21A)-C(26A)-H(26A)	120.4
C(35A)-C(36A)-C(31A)	118.8(3)
C(35A)-C(36A)-H(36A)	120.6
C(31A)-C(36A)-H(36A)	120.6
C(34A)-C(35A)-C(36A)	120.6(3)
C(34A)-C(35A)-H(35A)	119.7
C(36A)-C(35A)-H(35A)	119.7
C(23B)-C(24B)-C(25B)	120.7(3)
C(23B)-C(24B)-H(24B)	119.6
C(25B)-C(24B)-H(24B)	119.6
C(24B)-C(23B)-C(22B)	120.2(3)
C(24B)-C(23B)-H(23B)	119.9
C(22B)-C(23B)-H(23B)	119.9
C(23B)-C(22B)-C(21B)	119.5(3)
C(23B)-C(22B)-H(22D)	120.3
C(21B)-C(22B)-H(22D)	120.3

C(22B)-C(21B)-C(26B)	120.4(3)
C(22B)-C(21B)-P(4)	119.6(2)
C(26B)-C(21B)-P(4)	120.0(2)
C(15B)-C(444)-P(4)	110.67(17)
C(15B)-C(444)-H(44B)	109.5
P(4)-C(444)-H(44B)	109.5
C(15B)-C(444)-H(44C)	109.5
P(4)-C(444)-H(44C)	109.5
H(44B)-C(444)-H(44C)	108.1
N(2)-C(15B)-C(14B)	123.0(2)
N(2)-C(15B)-C(444)	115.7(2)
C(14B)-C(15B)-C(444)	121.3(2)
N(2)-C(11B)-C(12B)	123.3(2)
N(2)-C(11B)-C(333)	115.9(2)
C(12B)-C(11B)-C(333)	120.9(2)
C(11B)-C(333)-P(3)	114.42(17)
С(11В)-С(333)-Н(33В)	108.7
P(3)-C(333)-H(33B)	108.7
С(11В)-С(333)-Н(33С)	108.7
P(3)-C(333)-H(33C)	108.7
H(33B)-C(333)-H(33C)	107.6
C(56B)-C(51B)-C(52B)	120.0(2)
C(56B)-C(51B)-P(3)	122.97(19)
C(52B)-C(51B)-P(3)	117.0(2)
C(53B)-C(52B)-C(51B)	119.6(3)
C(53B)-C(52B)-H(52B)	120.2
C(51B)-C(52B)-H(52B)	120.2
C(52B)-C(53B)-C(54B)	120.2(3)
C(52B)-C(53B)-H(53B)	119.9
C(54B)-C(53B)-H(53B)	119.9
C(53B)-C(54B)-C(55B)	120.8(3)
C(53B)-C(54B)-H(54B)	119.6
C(55B)-C(54B)-H(54B)	119.6
C(33B)-C(34B)-C(35B)	120.7(3)
C(33B)-C(34B)-H(34B)	119.6
C(35B)-C(34B)-H(34B)	119.6

C(34B)-C(33B)-C(32B)	120.7(3)
C(34B)-C(33B)-H(33D)	119.6
C(32B)-C(33B)-H(33D)	119.6
C(33B)-C(32B)-C(31B)	118.3(3)
C(33B)-C(32B)-H(32B)	120.8
C(31B)-C(32B)-H(32B)	120.8
C(36B)-C(31B)-C(32B)	120.7(2)
C(36B)-C(31B)-P(4)	119.5(2)
C(32B)-C(31B)-P(4)	119.8(2)
C(24B)-C(25B)-C(26B)	120.8(3)
C(24B)-C(25B)-H(25B)	119.6
C(26B)-C(25B)-H(25B)	119.6
C(25B)-C(26B)-C(21B)	118.4(3)
C(25B)-C(26B)-H(26B)	120.8
C(21B)-C(26B)-H(26B)	120.8
C(42B)-C(41B)-C(46B)	120.6(2)
C(42B)-C(41B)-P(3)	119.93(19)
C(46B)-C(41B)-P(3)	119.3(2)
C(43B)-C(42B)-C(41B)	119.6(2)
C(43B)-C(42B)-H(42B)	120.2
C(41B)-C(42B)-H(42B)	120.2
C(44B)-C(43B)-C(42B)	120.3(3)
C(44B)-C(43B)-H(43B)	119.9
C(42B)-C(43B)-H(43B)	119.9
C(43B)-C(44B)-C(45B)	119.9(3)
C(43B)-C(44B)-H(44D)	120.1
C(45B)-C(44B)-H(44D)	120.1
C(44B)-C(45B)-C(46B)	121.1(3)
C(44B)-C(45B)-H(45B)	119.5
C(46B)-C(45B)-H(45B)	119.5
C(45B)-C(46B)-C(41B)	118.6(3)
C(45B)-C(46B)-H(46B)	120.7
C(41B)-C(46B)-H(46B)	120.7
C(54B)-C(55B)-C(56B)	119.5(3)
C(54B)-C(55B)-H(55B)	120.3
C(56B)-C(55B)-H(55B)	120.3

C(51B)-C(56B)-C(55B)	119.9(2)
C(51B)-C(56B)-H(56B)	120.1
C(55B)-C(56B)-H(56B)	120.1
C(13B)-C(12B)-C(11B)	118.5(2)
C(13B)-C(12B)-H(12B)	120.8
C(11B)-C(12B)-H(12B)	120.8
C(12B)-C(13B)-C(14B)	119.4(2)
C(12B)-C(13B)-H(13B)	120.3
C(14B)-C(13B)-H(13B)	120.3
C(15B)-C(14B)-C(13B)	118.3(2)
C(15B)-C(14B)-H(14B)	120.9
C(13B)-C(14B)-H(14B)	120.9
C(35B)-C(36B)-C(31B)	119.5(3)
C(35B)-C(36B)-H(36B)	120.2
C(31B)-C(36B)-H(36B)	120.2
C(34B)-C(35B)-C(36B)	119.9(3)
C(34B)-C(35B)-H(35B)	120.0
C(36B)-C(35B)-H(35B)	120.0
F(5)-C(63)-F(6)	108.5(3)
F(5)-C(63)-F(7)	106.9(2)
F(6)-C(63)-F(7)	107.1(3)
F(5)-C(63)-S(2)	111.94(19)
F(6)-C(63)-S(2)	111.3(2)
F(7)-C(63)-S(2)	110.7(2)
F(9)-C(64)-F(8)	107.1(3)
F(9)-C(64)-F(10)	107.8(3)
F(8)-C(64)-F(10)	106.9(2)
F(9)-C(64)-S(3)	111.7(2)
F(8)-C(64)-S(3)	112.4(2)
F(10)-C(64)-S(3)	110.6(2)
F(15)-C(66)-F(16)	107.2(3)
F(15)-C(66)-F(14)	107.2(3)
F(16)-C(66)-F(14)	107.9(3)
F(15)-C(66)-S(5)	111.6(2)
F(16)-C(66)-S(5)	111.7(2)
F(14)-C(66)-S(5)	111.0(2)

F(12B)-C(1S)-F(11B)	110.9(9)		
F(12B)-C(1S)-F(13B)	109.1(10)		
F(11B)-C(1S)-F(13B)	114.5(12)		
F(11A)-C(1S)-F(13A)	105.4(4)		
F(11A)-C(1S)-F(12A)	108.1(4)		
F(13A)-C(1S)-F(12A)	102.4(3)		
F(11A)-C(1S)-S(1A)	114.3(2)		
F(13A)-C(1S)-S(1A)	112.4(2)		
F(12A)-C(1S)-S(1A)	113.2(2)		
F(12B)-C(1S)-S(1B)	110.5(5)		
F(11B)-C(1S)-S(1B)	108.0(7)		
F(13B)-C(1S)-S(1B)	103.5(5)		
O(3A)-S(1A)-O(1A)	114.8(3)		
O(3A)-S(1A)-O(2A)	114.2(4)		
O(1A)-S(1A)-O(2A)	115.8(5)		
O(3A)-S(1A)-C(1S)	102.63(18)		
O(1A)-S(1A)-C(1S)	102.3(3)		
O(2A)-S(1A)-C(1S)	104.6(3)		
O(2B)-S(1B)-O(1B)	108.0(14)		
O(2B)-S(1B)-O(3B)	122.1(16)		
O(1B)-S(1B)-O(3B)	117.3(11)		
O(2B)-S(1B)-C(1S)	102.2(14)		
O(1B)-S(1B)-C(1S)	101.1(5)		
O(3B)-S(1B)-C(1S)	102.5(9)		
Table 13. Crystal data and structure refi	nement for 8.		
---	------------------------------------	---	--
Identification code	pbca_sq		
Empirical formula	$C_{33}H_{30}F_7NO_3P_2S$		
Formula weight	715.58		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 16.7886(16) Å	α= 90°.	
	b = 16.6604(15) Å	β= 90°.	
	c = 27.550(2) Å	$\gamma = 90^{\circ}$.	
Volume	7705.9(12) Å ³		
Ζ	8		
Density (calculated)	1.234 Mg/m ³		
Absorption coefficient	0.231 mm ⁻¹		
F(000)	2944		
Crystal size	0.150 x 0.150 x 0.080 m	m ³	
Theta range for data collection	1.912 to 23.255°.		
Index ranges	-18<=h<=15, -18<=k<=	17, -30<=l<=30	
Reflections collected	35388		
Independent reflections	5536 [R(int) = 0.0639]		
Completeness to theta = 23.255°	99.9 %	99.9 %	
Absorption correction	None		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	5536 / 3 / 425		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0630, wR2 = 0.14	467	
R indices (all data)	R1 = 0.1026, wR2 = 0.16	R1 = 0.1026, wR2 = 0.1665	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.551 and -0.509 e.Å ⁻³		

	Х	У	Z	U(eq)
P(1)	8252(1)	10322(1)	1191(1)	35(1)
F(1)	7561(2)	9421(2)	3494(1)	65(1)
N(1)	7680(2)	9606(2)	2349(1)	36(1)
C(1A)	7326(3)	8998(3)	2602(2)	44(1)
C(1)	7319(3)	10424(3)	2348(2)	46(1)
C(2)	7687(4)	8249(3)	2611(2)	57(1)
C(22)	5985(4)	11091(3)	3509(2)	72(2)
C(21)	6641(3)	10606(3)	3575(2)	57(1)
C(3)	8394(4)	8124(3)	2383(2)	66(2)
C(4)	8729(3)	8741(3)	2117(2)	51(1)
C(25)	7403(5)	11809(5)	3761(2)	99(2)
C(1B)	8362(3)	9479(3)	2092(1)	36(1)
C(24)	6744(6)	12254(5)	3692(3)	105(3)
C(23)	6051(5)	11913(4)	3563(2)	95(2)
C(26)	7357(4)	10966(4)	3700(2)	83(2)
C(11)	6492(3)	8863(3)	4003(2)	45(1)
C(12)	5942(3)	8244(3)	4013(2)	51(1)
C(13)	5898(3)	7741(3)	4416(2)	62(2)
C(14)	6393(4)	7872(4)	4805(2)	70(2)
C(15)	6936(4)	8479(4)	4801(2)	78(2)
C(16)	6993(4)	8978(3)	4398(2)	68(2)
C(33)	6287(4)	11677(4)	893(2)	76(2)
C(222)	6555(3)	9134(3)	2860(2)	50(1)
C(31)	7569(3)	11158(3)	1126(2)	42(1)
C(41)	8488(3)	9702(2)	672(2)	38(1)
C(46)	9275(3)	9588(3)	534(2)	48(1)
C(45)	9455(4)	9105(3)	134(2)	65(2)
C(36)	7817(3)	11933(3)	1224(2)	58(1)
C(42)	7886(3)	9339(3)	404(2)	54(1)
C(44)	8843(6)	8767(3)	-129(2)	79(2)
C(32)	6794(3)	11040(3)	966(2)	57(1)

Table 14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for pbca_sq. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(34)	6541(5)	12444(4)	994(2)	80(2)
C(35)	7293(5)	12568(3)	1162(2)	80(2)
C(43)	8067(5)	8876(3)	5(2)	73(2)
C(111)	8715(3)	10123(3)	1782(2)	39(1)
C(1T)	5258(5)	6110(5)	3003(4)	148(5)
P(2)	6577(1)	9526(1)	3483(1)	46(1)
F(2)	5584(1)	9559(2)	3445(1)	47(1)
F(3)	9023(1)	10913(1)	1082(1)	44(1)
F(4)	7488(1)	9709(1)	1328(1)	40(1)
S(1)	5603(1)	6918(1)	2667(1)	75(1)
O(1)	5257(3)	7595(2)	2889(2)	102(2)
F(1T)	5389(4)	6145(3)	3468(2)	178(3)
F(2T)	5542(4)	5415(2)	2863(2)	230(4)
O(2)	6428(3)	6817(3)	2722(3)	154(3)
O(3)	5415(6)	6770(4)	2195(2)	210(4)
F(3T)	4458(4)	6082(5)	2963(4)	272(5)

P(1)-F(3)	1.654(3)
P(1)-F(4)	1.682(3)
P(1)-C(41)	1.807(4)
P(1)-C(31)	1.812(5)
P(1)-C(111)	1.833(4)
F(1)-P(2)	1.661(3)
N(1)-C(1B)	1.362(5)
N(1)-C(1A)	1.366(5)
N(1)-C(1)	1.492(5)
C(1A)-C(2)	1.388(7)
C(1A)-C(222)	1.495(6)
C(2)-C(3)	1.358(7)
C(22)-C(21)	1.378(8)
C(22)-C(23)	1.383(8)
C(21)-C(26)	1.387(8)
C(21)-P(2)	1.820(6)
C(3)-C(4)	1.382(7)
C(4)-C(1B)	1.377(6)
C(25)-C(24)	1.346(10)
C(25)-C(26)	1.416(10)
C(1B)-C(111)	1.494(6)
C(24)-C(23)	1.343(10)
C(11)-C(12)	1.386(6)
C(11)-C(16)	1.389(7)
C(11)-P(2)	1.813(5)
C(12)-C(13)	1.394(7)
C(13)-C(14)	1.374(7)
C(14)-C(15)	1.362(8)
C(15)-C(16)	1.390(8)
C(33)-C(34)	1.375(9)
C(33)-C(32)	1.376(7)
C(222)-P(2)	1.837(4)
C(31)-C(36)	1.382(6)
C(31)-C(32)	1.388(7)

Table 15. Bond lengths [Å] and angles [°] for pbca_sq.

_

C(41)-C(46)	1.389(6)
C(41)-C(42)	1.391(6)
C(46)-C(45)	1.398(7)
C(45)-C(44)	1.377(9)
C(36)-C(35)	1.388(7)
C(42)-C(43)	1.377(7)
C(44)-C(43)	1.365(9)
C(34)-C(35)	1.361(9)
C(1T)-F(1T)	1.301(12)
C(1T)-F(2T)	1.311(8)
C(1T)-F(3T)	1.349(11)
C(1T)-S(1)	1.731(10)
P(2)-F(2)	1.672(3)
S(1)-O(3)	1.360(6)
S(1)-O(2)	1.403(5)
S(1)-O(1)	1.409(4)
F(3)-P(1)-F(4)	177.24(14)
F(3)-P(1)-C(41)	91.40(17)
F(4)-P(1)-C(41)	89.82(17)
F(3)-P(1)-C(31)	91.15(18)
F(4)-P(1)-C(31)	90.38(18)
C(41)-P(1)-C(31)	120.0(2)
F(3)-P(1)-C(111)	86.39(16)
F(4)-P(1)-C(111)	90.86(16)
C(41)-P(1)-C(111)	120.3(2)
C(31)-P(1)-C(111)	119.7(2)
C(1B)-N(1)-C(1A)	121.1(4)
C(1B)-N(1)-C(1)	118.8(3)
C(1A)-N(1)-C(1)	120.0(4)
N(1)-C(1A)-C(2)	119.0(4)
N(1)-C(1A)-C(222)	120.6(4)
C(2)-C(1A)-C(222)	120.4(4)
C(3)-C(2)-C(1A)	120.8(5)
C(21)-C(22)-C(23)	120.1(7)
C(22)-C(21)-C(26)	118.1(6)

C(22)-C(21)-P(2)	120.9(4)
C(26)-C(21)-P(2)	121.0(5)
C(2)-C(3)-C(4)	119.1(5)
C(1B)-C(4)-C(3)	120.6(5)
C(24)-C(25)-C(26)	119.0(7)
N(1)-C(1B)-C(4)	119.2(4)
N(1)-C(1B)-C(111)	121.3(4)
C(4)-C(1B)-C(111)	119.5(4)
C(23)-C(24)-C(25)	121.1(8)
C(24)-C(23)-C(22)	121.2(8)
C(21)-C(26)-C(25)	120.5(7)
C(12)-C(11)-C(16)	119.4(5)
C(12)-C(11)-P(2)	121.4(4)
C(16)-C(11)-P(2)	119.2(4)
C(11)-C(12)-C(13)	119.9(5)
C(14)-C(13)-C(12)	119.7(5)
C(15)-C(14)-C(13)	121.0(5)
C(14)-C(15)-C(16)	119.8(5)
C(11)-C(16)-C(15)	120.1(5)
C(34)-C(33)-C(32)	119.8(6)
C(1A)-C(222)-P(2)	118.8(3)
C(36)-C(31)-C(32)	118.5(5)
C(36)-C(31)-P(1)	120.5(4)
C(32)-C(31)-P(1)	121.0(4)
C(46)-C(41)-C(42)	119.0(4)
C(46)-C(41)-P(1)	120.3(3)
C(42)-C(41)-P(1)	120.7(4)
C(41)-C(46)-C(45)	120.1(5)
C(44)-C(45)-C(46)	119.2(6)
C(31)-C(36)-C(35)	119.8(5)
C(43)-C(42)-C(41)	120.6(6)
C(43)-C(44)-C(45)	121.0(5)
C(33)-C(32)-C(31)	121.1(5)
C(35)-C(34)-C(33)	119.8(6)
C(34)-C(35)-C(36)	121.0(6)
C(44)-C(43)-C(42)	120.1(6)

C(1B)-C(111)-P(1)	118.0(3)
F(1T)-C(1T)-F(2T)	105.5(11)
F(1T)-C(1T)-F(3T)	104.4(7)
F(2T)-C(1T)-F(3T)	107.9(7)
F(1T)-C(1T)-S(1)	115.8(6)
F(2T)-C(1T)-S(1)	114.1(5)
F(3T)-C(1T)-S(1)	108.5(10)
F(1)-P(2)-F(2)	175.03(16)
F(1)-P(2)-C(11)	90.01(19)
F(2)-P(2)-C(11)	89.54(18)
F(1)-P(2)-C(21)	92.5(2)
F(2)-P(2)-C(21)	92.0(2)
C(11)-P(2)-C(21)	119.8(2)
F(1)-P(2)-C(222)	89.91(19)
F(2)-P(2)-C(222)	86.10(18)
C(11)-P(2)-C(222)	121.3(2)
C(21)-P(2)-C(222)	118.8(2)
O(3)-S(1)-O(2)	108.1(5)
O(3)-S(1)-O(1)	117.7(4)
O(2)-S(1)-O(1)	117.1(4)
O(3)-S(1)-C(1T)	107.0(5)
O(2)-S(1)-C(1T)	100.3(4)
O(1)-S(1)-C(1T)	104.7(3)