Supplementary Information

Synthesis of coenzyme Q₀ through divanadium-catalyzed oxidation of 3,4,5-trimethoxytoluene with hydrogen peroxide

Olga V. Zalomaeva, a Vasiliy Yu. Evtushok, a, b Gennadii M. Maksimov, a Raisa I. Maksimovskaya a and Oxana A. Kholdeeva* a, b

a Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva 5, Novosibirsk 630090, Russia. E-mail: khold@catalysis.ru; Fax: +7-383-330-9573; Tel: +7-383-326-9433.
b Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.

Table of contents

Figure S1. FTIR spectra of (Bu₄N)₃.5H₁.5[γ-PW₁₀V₂O₄₀]: initial and after catalytic reaction.

Figure S2. ⁵¹V NMR (400 MHz; 25 °C) spectrum of (Bu₄N)₃.3H₁.7[γ-PW₁₀V₂O₄₀] in dry CH₃CN.

Figure S3. Potentiometric titration of (Bu₄N)₃.3H₁.5[γ-PW₁₀V₂O₄₀] with TBAOH.

Figure S4. ¹H NMR (400 MHz; 25 °C) spectrum of isolated 2,3-dimethoxy-5-methyl-1,4-benzoquinone in CDCl₃.

Figures S5-S9. ¹H NMR spectra of other quinone products.
Figure S1. FTIR spectra of (Bu₄N)₃.₃H₁.₅[γ-PW₁₀V₂O₄₀]: initial and after catalytic reaction.

Figure S2. 51V NMR (400 MHz; 0.0015 M, 25 °C) spectrum of (Bu₄N)₃.₃H₁.₇[γ-PW₁₀V₂O₄₀] in dry CH₃CN.
Figure S3. Potentiometric titration of (Bu₄N)₃.₅H₁.₅[γ-PW₁₀V₂O₄₀] with TBAOH.
Figure S4. 1H NMR (400 MHz; 25 °C) spectrum of isolated 2,3-dimethoxy-5-methyl-1,4-benzoquinone in CDCl$_3$.
Figure S5. 1H NMR (400 MHz; 25 °C) spectrum of 2-methoxy-5-methyl-1,4-benzoquinone in reaction mixture (CD$_3$CN) after complete conversion of substrate.
Figure S6. 1H NMR (400 MHz; 25 °C) spectrum of 2-methoxy-6-methyl-1,4-benzoquinone in reaction mixture (CD$_3$CN) after complete conversion of substrate.
Figure S7. 1H NMR (400 MHz; 25 °C) spectrum of isolated 2,6-dimethoxy-3-methyl-1,4-benzoquinone in CDCl$_3$.
Figure S8. 1H NMR (400 MHz; 25 °C) spectrum of 2,3-dimethoxy-1,4-benzoquinone in reaction mixture (CH$_3$CN) after complete conversion of substrate.
Figure S9. 1H NMR (400 MHz; 25 °C) spectrum of isolated 2,6-dimethoxy-1,4-benzoquinone in CDCl$_3$.