Supporting Information

Novel intramolecular π - π -interaction in a BODIPY system by oxidation of a single selenium center: geometrical stamping and spectroscopic and spectrometric distinctions

Youngsam Kim,^{a,b} Taehong Jun,^a Sandip V. Mulay,^b Sudesh T. Manjare,^c Jinseong Kwak,^d Yunho Lee^d and David G. Churchill^{a,b*}

dchurchill@kaist.ac.kr

Fig. S1. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 2 in CDCl₃.

Fig. S2. (top) ${}^{1}H{}^{-13}C$ HSQC NMR spectrum of compound 2, and (bottom) expanded aromatic region in CDCl₃.

Fig. S3. (top) ¹H-¹³C HMBC NMR spectrum of compound **2**, and (bottom) expanded aromatic region in CDCl₃.

Figure S4. ⁷⁷Se NMR spectrum of compound 2 in CDCl₃.

Fig. S5. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 3 in CD_2Cl_2 .

Figure S6. (top) ¹¹B and (bottom) ¹⁹F NMR spectrum of compound 3 in CD_2Cl_2 .

Figure S7. ⁷⁷Se NMR spectrum of compound 3 in CD₂Cl₂.

Figure S8. (top) COSY and (bottom) NOESY spectrum of compound 3 in CD_2Cl_2 .

Fig. S9. (top) ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of compound 3, and (bottom) expanded aromatic region in CD_2Cl_2 .

Fig. S10. (top) $^{1}H^{-13}C$ HSQC NMR spectrum of compound 3, and (bottom) expanded aromatic region $CD_{2}Cl_{2}$.

Fig. S11. (top) ¹H NMR and (bottom) ¹³C NMR spectrum of compound 4 in CD_2Cl_2 .

Fig. S12. (top) 11 B and (bottom) 19 F NMR spectrum of compound 4 in CD₂Cl₂.

Fig. S13. 77 Se NMR spectrum of compound 4 in CD₂Cl₂.

Fig. S14. (top) COSY and (bottom) NOESY spectrum of compound 4 in CD_2Cl_2 .

Fig. S15. (top) $^{1}H^{-13}C$ HMBC NMR spectrum of compound 4, and (bottom) expanded aromatic region in CD_2Cl_2 .

Fig. S16. (top) $^{1}H^{-13}C$ HSQC NMR spectrum of compound 4, and (bottom) expanded aromatic region in CD_2Cl_2 .

Fig. S17. HR-MS spectrum (ESI) of compound 3.

Fig. S18. HR-MS spectrum (ESI) of compound 4.

Fig. S19. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig. S20. (top) $^{1}H^{-13}C$ HMBC NMR spectrum of compound 5, and (bottom) expanded aromatic region in CDCl₃.

Fig. S21. (top) ¹H-¹³C HSQC NMR spectrum of compound **5**, and (bottom) expanded aromatic region in CDCl₃.

Fig. S22. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 7 in CDCl₃.

Fig. S23. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 8 in CDCl₃.

Fig. S24. (top) ¹¹B and (bottom) ¹⁹F NMR spectrum of compound 8 in CDCl₃.

Fig. S25. (top) ¹H-¹³C HMBC NMR spectrum of compound **8**, and (bottom) expanded aromatic region in CDCl₃.

Fig. S26. (top) ¹H-¹³C HSQC NMR spectrum of compound **8**, and (bottom) expanded aromatic region in CDCl₃.

Fig. S27. HR-MS spectrum (ESI) of compound 8.

Fig. S28. (top) ¹H and (bottom) ¹³C NMR spectrum of compound 9 in CDCl₃.

Fig. S29. (top) ¹¹B and (bottom) ¹⁹F NMR spectrum of compound 9 in CDCl₃.

Fig. S30. (top) ¹H-¹³C HMBC NMR spectrum of compound **9**, and (bottom) expanded aromatic region in CDCl₃.

Fig. S31. (top) ¹H-¹³C HSQC NMR spectrum of compound **9**, and (bottom) expanded aromatic region in CDCl₃.

Fig. S32. HR-MS spectrum (ESI) of compound 9.

Fig. S33. (a) UV–absorption spectra of compound **3** (10.0 μ M) with 5.0 equiv ROS (KO₂, H₂O₂, 'BuOOH, NaOCl, ONOO⁻) in the solution (CH₃CN:H₂O, 1:1 v/v); (b) Fluorescence spectra of compound **3** (10.0 μ M) with 5.0 equiv ROS (KO₂, H₂O₂, 'BuOOH, NaOCl, ONOO⁻) in the solution (CH₃CN:H₂O, 1:1 v/v), Slit width for Ex. and Em. = 1.5 nm

Fig. S34. (a) UV–absorption spectra of compound **3** (10.0 μ M) and **4** (1.0 μ M) in CH₃CN; (b) Fluorescence spectra of compound **3** (1.0 μ M) and **4** (10.0 μ M) in CH₃CN; Slit width for Ex. and Em. = 1.5 nm.

Fig. S35. (a) UV–absorption spectra of compound **3** (10.0 μ M) with 0 to 10.0 equiv of NaOCl in the solution (CH₃CN:H₂O, 1:1 v/v); (b) Fluorescence spectra of compound **3** (10.0 μ M) with 0.0 to 8.0 equiv of NaOCl in the solution (CH₃CN:H₂O, 1:1 v/v). Slit width for Ex. and Em. = 1.5 nm.

Fig. S36. (a) Fluorescence spectra of compound **4** (1 μ M) with GSH (500 equiv, 0-24 hr) in the solution (CH₃CN:H₂O, 1:1 v/v), Slit width for Ex. and Em. = 1.5 nm; (b) Fluorescence spectra of compound **4** (1.0 μ M) with GSH (1000 equiv, 0-24 hr) in the solution (CH₃CN:H₂O, 1:1 v/v), Slit width for Ex. and Em. = 1.5 nm.

Equation y = a +	b*x		
Adj. R-Square	0.99545	0.98059	0.97511
	Value		Standard Error
1*10 ⁻⁵ M Intercept	18.42491		13.17854
1*10 ⁻⁵ M Slope	115.83072		2.76805
5*10 ⁻⁶ M Intercept	-16.28959		17.84621
5*10 ⁻⁶ M Slope	67.8647		3.01656
1*10 ⁻⁶ M Intercept	0.59877		2.02491
1*10 ⁻⁶ M Slope	6.78386		0.34227

Fig. S37. Titration curves of compound **3** (1.0 μ M, 5.0 μ M, 10.0 μ M) with increasing equivalents of NaOCl added to the solution (CH₃CN:H₂O, 1:1 v/v), Slit width for Ex. and Em. = 1.5 nm.

Fig. S38. From LUMO + 2 to HOMO -2 (from top to bottom) of geometry–optimized compound **3**, compound **4** and **optimized 4/4'**(left to right) based on gas phase calculations.

 Table S1. Crystal data and structure refinement for compound 4.

CCDC No.	1000278			
Empirical formula	C23 H20 B Br F2 N2	C23 H20 B Br F2 N2 O S Se		
Formula weight	580.15			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.9526(2) Å	$\alpha = 94.4778(14)^{\circ}$.		
	b = 10.2532(3) Å	$\beta = 106.8774(12)^{\circ}$.		
	c = 14.7976(4) Å	$\gamma = 114.9387(12)^{\circ}$.		
Volume	1146.72(5) Å ³			
Ζ	2			
Density (calculated)	1.680 Mg/m ³			
Absorption coefficient	3.506 mm ⁻¹			
F(000)	576			
Crystal size	$0.30 \times 0.18 \times 0.03$ m	$0.30 \times 0.18 \times 0.03 \text{ mm}^3$		
Theta range for data collection	2.75 to 28.06°.			
Index ranges	$-11 \le h \le 11, -13 \le k$	$-11 \le h \le 11, -13 \le k \le 13, -19 \le l \le 19$		
Reflections collected	63841			
Independent reflections	5542 [R(int) = 0.0414	1]		
Completeness to theta = 28.06°	99.4 %			
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.9021 and 0.4194	0.9021 and 0.4194		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	5542 / 0 / 289			
Goodness-of-fit on F ²	1.075			
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 =	0.0935		
R indices (all data)	R1 = 0.0466, WR2 = 0.0989			
Largest diff. peak and hole	0.852 and -0.388 e.Å ⁻³			

Se(1)-O(1)	1.6602(19)
Se(1)-C(17)	1.928(2)
Se(1)-C(18)	1.932(3)
Br(1)-C(16)	1.871(3)
S(1)-C(16)	1.712(3)
S(1)-C(17)	1.719(2)
B(1)-F(2)	1.385(3)
B(1)-F(1)	1.391(4)
B(1)-N(1)	1.540(5)
B(1)-N(2)	1.543(5)
N(1)-C(2)	1.348(4)
N(1)-C(6)	1.402(3)
N(2)-C(8)	1.342(4)
N(2)-C(12)	1.404(3)
C(1)-C(2)	1.503(4)
C(2)-C(3)	1.388(5)
C(3)-C(4)	1.378(4)
C(4)-C(6)	1.422(4)
C(4)-C(5)	1.505(4)
C(6)-C(13)	1.392(4)
C(7)-C(8)	1.504(5)
C(8)-C(9)	1.385(6)
C(9)-C(10)	1.381(4)
C(10)-C(12)	1.423(4)
C(10)-C(11)	1.485(5)
C(12)-C(13)	1.389(4)
C(13)-C(14)	1.484(3)
C(14)-C(17)	1.359(3)
C(14)-C(15)	1.424(4)
C(15)-C(16)	1.352(4)
C(18)-C(23)	1.371(5)
C(18)-C(19)	1.375(4)
C(19)-C(20)	1.382(5)
C(20)-C(21)	1.363(8)
C(21)-C(22)	1.366(9)
C(22)-C(23)	1.383(6)

 Table S2.
 Bond lengths [Å] and angles [°] for compound 4.

O(1)-Se(1)-C(17)	99.75(10)
O(1)-Se(1)-C(18)	103.43(12)
C(17)-Se(1)-C(18)	96.72(10)
C(16)-S(1)-C(17)	90.23(12)
F(2)-B(1)-F(1)	109.0(2)
F(2)-B(1)-N(1)	110.7(3)
F(1)-B(1)-N(1)	109.8(3)
F(2)-B(1)-N(2)	110.7(3)
F(1)-B(1)-N(2)	109.7(3)
N(1)-B(1)-N(2)	107.0(2)
C(2)-N(1)-C(6)	107.8(3)
C(2)-N(1)-B(1)	127.5(3)
C(6)-N(1)-B(1)	124.5(3)
C(8)-N(2)-C(12)	107.5(3)
C(8)-N(2)-B(1)	126.9(3)
C(12)-N(2)-B(1)	125.2(3)
N(1)-C(2)-C(3)	109.4(3)
N(1)-C(2)-C(1)	122.8(4)
C(3)-C(2)-C(1)	127.8(4)
C(4)-C(3)-C(2)	108.9(3)
C(3)-C(4)-C(6)	106.1(3)
C(3)-C(4)-C(5)	124.2(3)
C(6)-C(4)-C(5)	129.7(3)
C(13)-C(6)-N(1)	120.0(3)
C(13)-C(6)-C(4)	132.0(2)
N(1)-C(6)-C(4)	107.9(2)
N(2)-C(8)-C(9)	109.7(3)
N(2)-C(8)-C(7)	122.8(4)
C(9)-C(8)-C(7)	127.5(4)
C(10)-C(9)-C(8)	109.2(3)
C(9)-C(10)-C(12)	105.3(3)
C(9)-C(10)-C(11)	124.9(3)
C(12)-C(10)-C(11)	129.8(3)
C(13)-C(12)-N(2)	119.3(3)
C(13)-C(12)-C(10)	132.4(3)
N(2)-C(12)-C(10)	108.3(2)
C(12)-C(13)-C(6)	122.3(2)
C(12)-C(13)-C(14)	118.9(2)
C(6)-C(13)-C(14)	118.8(2)

C(17)-C(14)-C(15)	112.4(2)
C(17)-C(14)-C(13)	123.0(2)
C(15)-C(14)-C(13)	124.7(2)
C(16)-C(15)-C(14)	111.3(2)
C(15)-C(16)-S(1)	113.6(2)
C(15)-C(16)-Br(1)	126.7(2)
S(1)-C(16)-Br(1)	119.60(14)
C(14)-C(17)-S(1)	112.48(18)
C(14)-C(17)-Se(1)	130.67(18)
S(1)-C(17)-Se(1)	116.79(12)
C(23)-C(18)-C(19)	122.4(3)
C(23)-C(18)-Se(1)	119.6(3)
C(19)-C(18)-Se(1)	117.9(2)
C(18)-C(19)-C(20)	118.7(4)
C(21)-C(20)-C(19)	119.7(5)
C(20)-C(21)-C(22)	120.7(4)
C(21)-C(22)-C(23)	121.0(5)
C(18)-C(23)-C(22)	117.4(5)

Symmetry transformations used to generate equivalent atoms:

		f	Comp	osition	CI (%)
		0.2996	HOMO-2 \rightarrow LUMO		3.36
			HOMO-1 \rightarrow	LUMO	19.7
	3		$HOMO \rightarrow L$	UMO	77.7
		0.1007	$HOMO-2 \rightarrow$	LUMO	2.74
			HOMO-1 \rightarrow LUMO		79.2
			$HOMO \rightarrow L^{1}$	UMO	17.6
			$HOMO-2 \rightarrow$	LUMO	8.76
	4		$HOMO-1 \rightarrow$	LUMO	4.36
			$HOMO \rightarrow L$	UMO	87.6
			$HOMO-2 \rightarrow$	LUMO	2.46
	Ontimized 4	0.3603	$HOMO-1 \rightarrow$	LUMO	2.63
	Optimized 4		$HOMO \rightarrow L$	UMO	93.7
			$HOMO \rightarrow L$	UMO+1	2.24
		НОМО-2 —	→ LUMO	4.49	
Optimized 4	4' 0.4053	HOMO \rightarrow	LUMO	95.3	
		$LUMO \rightarrow H$	IOMO	2.97	

Table S3. Absorption energies with largest oscillator strength for **3**, **optimized 4** (B3LYP/6-31g* basis set and 6-311g* for Se and Br, G09) and **4** (from crystallography, non-optimized).

- END -