Supporting information:

Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates

Nao Tsunoji,*a Yuya yagenji,a Hidechika Nsihida,a Mahuya Bandypadhyay,a Masahiro Sadakane,a and Tsuneji Sanoa

aDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Corresponding Author

*Corresponding authors: Nao Tsunoji, tel.: +81-82-424-7606, e-mail: tnao7373@hiroshima-u.ac.jp;
Figure S1. 13C CP MAS spectra of HUS-2, C$_{16}$TMAHUS-2, C$_{16}$TMAHUS-2(hexane), HUS-7, C$_{16}$TMAHUS-7, and C$_{16}$TMAHUS-7(hexane).
Figure S2. TG curves of HUS-2, C\textsubscript{16}TMAHUS-2, C\textsubscript{16}TMAHUS-2(hexane), HUS-7, C\textsubscript{16}TMAHUS-7, and C\textsubscript{16}TMAHUS-7(hexane).
Figure S3. N\textsubscript{2} adsorption isotherms and BJH pore size distributions of calcined C\textsubscript{16}TMAHUS-7(hexane) C\textsubscript{16}TMAHUS-7(n-tridecane), C\textsubscript{16}TMAHUS-7(cyclohexane), C\textsubscript{16}TMAHUS-7(cyclopentane), and C\textsubscript{16}TMAHUS-7(cyclooctane)
Figure S4. (A) Heterogeneity test of NH$_2$-C$_{16}$TMAHUS-7(cyclohexane) and (B) catalyst performance with increased amounts of reaction components (triacetin (30 g), methanol (65.5 g), NH$_2$-C$_{16}$TMA HUS-7(cyclohexane) (10 mg)).
Figure S5. (A) XRD patterns and (B) TG curves of NH$_2$-C$_{16}$TMAHUS-7(cyclohexane) before and after catalytic reaction.