Electronic Supporting Information for

Complexes of Eu(III)(hfa)₃ with a planar chiral P(III) ligand (Phanephos): solvent-sensitive sign inversion of circularly polarised luminescence

Yuki Kono,^a Nobuyuki Hara,^a Motohiro Shizuma,^b Michiya Fujiki^{c*} and Yoshitane Imai^{a*}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.; E-mail: (Y.I.) <u>y-imai@apch.kindai.ac.jp</u>.

^{*b*} Department of Biochemistry, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan.

^c Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan. (M.F.) fujikim@ms.naist.jp.

Table of Contents

Fig.	S1	CPL and PL spectra as a function of (R)- or (S)-Phanephos : Eu(hfa) ₃ ratio in chloroform	S3
Fig.	S2	CD and UV–vis spectra as a function of (<i>R</i>)- or (<i>S</i>)-Phanephos : Eu(hfa) ₃ ratio in CHCl ₃	S4
Fig.	S 3	CPL and PL spectra as a function of (<i>R</i>)- or (<i>S</i>)-Phanephos : Eu(hfa) ₃ ratio in acetone	S7
Fig.	S4	CD and UV-vis spectra as a function of (<i>R</i>)- or (<i>S</i>)-Phanephos : Eu(hfa) ₃ ratio in acetone	S8
Fig.	S 5	Comparison of CD and UV–vis spectra of (R) -Phanephos in CHCl ₃ and acetone and proposed	
		models of change in local conformation of (R) -Phanephos in the ground and photoexcite	ed
		states.	S9
Fig.	S6	³¹ P-NMR spectra of (R)-Phanephos as a function of (R)-Phanephos-to-Eu(hfa) ₃ ratio in CDCl ₃	
Fig.	S7	³¹ P-NMR spectra of (R)-Phanephos as a function of (R)-Phanephos-to-Eu(hfa) ₃ ratio	
		in acetone- <i>d</i> ₆	S11
Fig.	S8	¹ H-NMR spectra of (<i>R</i>)-Phanephos without and with Eu(hfa) ₃ in CDCl ₃	S12
Fig.	S9	¹ H-NMR spectra of (R)-Phanephos without and with Eu(hfa) ₃ in acetone- d_6	S12
Fig.	S10	¹³ C-NMR spectra of (<i>R</i>)-Phanephos without and with Eu(hfa) ₃ in CDCl ₃	S13
Fig.	S11	Difference ¹³ C-NMR spectrum of (<i>R</i>)-Phanephos with Eu(hfa) ₃ (1:0 and 4:1) in CDCl ₃	S13
Fig.	S12	¹³ C-NMR spectra of (<i>R</i>)-Phanephos with Eu(hfa) ₃ (1:0 and 4:1) in acetone- d_6	S13
Fig.	S13	Difference ¹³ C-NMR spectrum of (R)-Phanephos with Eu(hfa) ₃ (1:0 and 4:1) in acetone- d_6	S13
Fig.	S14	¹⁹ F-NMR spectra of Eu(hfa) ₃ as a function of (<i>R</i>)-Phanephos : Eu(hfa) ₃ ratio in CDCl ₃	S13
Fig.	S15	¹⁹ F-NMR spectra of Eu(hfa) ₃ as a function of (R)-Phanephos : Eu(hfa) ₃ ratio in acetone- d_6	S15
Fig.	S16 .	Comparison of PL spectra of $Eu(hfa)_3$ without and with an equimolar amount of (<i>R</i>)-Phanphos in	n
		CHCl3 and acetone with Hamamatsu Photonics (photodiode arrayed detector)	S16

Fig. S1. CPL and PL spectra as a function of (*R*)- and (*S*)-Phanephos : Eu(hfa)₃ ratio in EtOH-free chloroform. Path length 1.0 mm. $\lambda_{ex} = 320$ nm. [Eu(hfa)₃]₀ = 1.0×10^{-3} M. Bandwidth for emission 2 nm, bandwidth for excitation 16 nm, response time of PMT 16 sec, scanning rate 20 nm per min, and one scan.

Fig. S2. (a) (*R*)- and (*S*)-Phanephos: Eu(hfa)₃ = 0.5:1. [Eu(hfa)₃]₀ = 5×10^{-4} M (final concentration), path length 1 mm.

Fig. S2. (b) (*R*)- and (*S*)-Phanephos:Eu(hfa)₃ = 1:1. [Eu(hfa)₃]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm.

Fig. S2. (c) (*R*)- and (*S*)-Phanephos:Eu(hfa)₃ = 2:1. [Eu(hfa)₃]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm.

Fig. S2. (d) (*R*)- and (*S*)-Phanephos:Eu(hfa)₃ = 3:1. $[Eu(hfa)_3]_0 = 5 \ge 10^{-4} \text{ M}$ (final concentration), path length 1 mm.

Fig. S2. (e) (*R*)- and (*S*)-Phanephos:Eu(hfa)₃ = 4:1. [Eu(hfa)₃]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm.

Fig. S2. (f) (*R*)- and (*S*)-Phanephos: Eu(hfa)₃ = 5:1. [Eu(hfa)₃]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm.

Fig. S2. (g) (*R*)- and (*S*)-Phanephos in the absence of Eu(hfa)₃ in CHCl₃. [Phanephos]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm. (h) Eu(hfa)₃ in the absence of Phanephos. [Eu(hfa)₃]₀ = 5 x 10^{-4} M (final concentration), path length 1 mm.

Fig. S2. CD and UV-vis spectra of (*R*)- and (*S*)-Phanephos : Eu(hfa)₃ in EtOH-free chloroform. [Eu(hfa)₃]₀ = 5×10^{-4} M (final concentration, fixed, path length 1 mm.).

Fig. S3. CPL and PL spectra as a function of (*R*)- and (*S*)-Phanephos : Eu(hfa)₃ ratio in acetone. Path length 1.0 mm. $\lambda_{ex} = 320$ nm. [Eu(hfa)₃]₀ = 1.0×10^{-3} M. Bandwidth for emission 2 nm, bandwidth for excitation 16 nm, response time of PMT 16 sec, scanning rate 20 nm per min, and one-time scan.

Fig. S4h. $Eu(hfa)_3$ in the absence of Phanephos in acetone. $[Eu(hfa)_3]_0 = 5 \times 10^{-4} M$ (final concentration), path length 1 mm.

Fig. S4. CD and UV-vis spectra of (*R*)- and (*S*)-Phanephos:Eu(hfa)₃ in acetone. [Eu(hfa)₃]₀ = 5×10^{-4} M (final concentration (fixed), path length 1.0 mm). UV-vis/CD spectra shorter than 320 nm are not valid because of cut-off wavelength from strong $n - \pi^*$ band of solvent acetone.

Fig. S5. Proposed models of change in local conformation of (R)-Phanephos. A prefer conformation is dependent of the nature of solvent molecules in the ground and/or photoexcited states.

Fig. S6-a. (*R*)-Phanephos : Eu(hfa)₃ (1:0).

Fig. S6-c. (*R*)-Phanephos : Eu(hfa)₃ (1:1).

Fig. S6-e. (*R*)-Phanephos : Eu(hfa)₃ (3:1).

Fig. S6-g. (*R*)-Phanephos : Eu(hfa)₃ (5:1).

Fig. S6-b. (*R*)-Phanephos : Eu(hfa)₃ (0.5:1).

Fig. S6-d. (*R*)-Phanephos : Eu(hfa)₃ (2:1).

Fig. S6-f. (*R*)-Phanephos : Eu(hfa)₃ (4:1).

Fig. S7-a. (R)-Phanephos : Eu(hfa)₃ (1:0).

Fig. S7-c. (*R*)-Phanephos : Eu(hfa)₃ (1:1).

Fig. S7-e. (*R*)-Phanephos : Eu(hfa)₃ (3:1).

Fig. S7-g. (*R*)-Phanephos : Eu(hfa)₃ (5:1).

Fig. S7-b. (*R*)-Phanephos : Eu(hfa)₃ (0.5:1).

Fig. S7-d. (*R*)-Phanephos : Eu(hfa)₃ (2:1).

Fig. S7-f. (*R*)-Phanephos : Eu(hfa)₃ (4:1).

in acetone- d_6 .

Fig. S8-a. ¹H-NMR spectrum of (R)-Phanephos without Eu(hfa)₃ in CDCl₃.

Fig. S9-a. ¹H-NMR spectrum of (*R*)-Phanephos without Eu(hfa)₃ in acetone- d_6 .

Fig. S8-b. ¹H-NMR spectrum of (R)-Phanephos with Eu(hfa)₃ (1:1) in CDCl₃.

Fig. S9-b. ¹H-NMR spectrum of (R)-Phanephos with Eu(hfa)₃ (1:1) in acetone- d_6 .

Fig. S10. ¹³C-NMR spectra of (R)-Phanephos with Eu(hfa)₃ (1:0 and 2:1) in CDCl₃.

Fig. S12. ¹³C-NMR spectra of (*R*)-Phanephos with Eu(hfa)₃ (1:0 and 4:1) in acetone- d_6 .

Fig. S11. Difference ¹³C-NMR spectrum of (*R*)-Phanephos with $Eu(hfa)_3$ (1:0 and 4:1) in CDCl₃. Data were taken from **Fig. S10**.

Fig. S13. Difference ¹³C-NMR spectrum of (*R*)-Phanephos with Eu(hfa)₃ (1:0 and 4:1) in acetone- d_6 . Data were taken from **Fig. S12**.

Fig. S14-a. (*R*)-Phanephos and Eu(hfa)₃ (0.5:1).

Fig. S14-c. (*R*)-Phanephos and Eu(hfa)₃ (2:1).

Fig. S14-e. (*R*)-Phanephos and Eu(hfa)₃ (4:1).

Fig. S14-d. (*R*)-Phanephos and Eu(hfa)₃ (3:1).

Fig. S14-f. (*R*)-Phanephos and Eu(hfa)₃ (5:1).

Fig. S14. ¹⁹F-NMR spectra of $Eu(hfa)_3$ as a function of (*R*)-Phanephos-to- $Eu(hfa)_3$ ratio in CDCl₃.

Fig. S15. ¹⁹F-NMR spectra of $Eu(hfa)_3$ as a function of (*R*)-Phanephos-to- $Eu(hfa)_3$ ratio in acetone- d_6 .

Fig. S16. Comparison of total PL spectra of $Eu(hfa)_3$ with/without an equimolar amount of (*R*)-Phanephos in (a) CHCl₃ excited at 330 nm and (b) acetone excited at 335 nm measured with Hamamatsu Photonics with photodiode arrayed detector (C9920-02, spectral resolution 0.75 nm).