Revised Supporting information (DT-ART-03-2017-000895) for:

Achieving Yellow Emission by Varying Donor/Acceptor Units in Rodshaped Fluorenyl-alkynyl Based π-Conjugated Oligomers and Their Binuclear Gold(I) Alkynyl Complexes

Sk Najmul Islam,^a Amit Sil,^a and Sanjib K. Patra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, INDIA, E-mail: <u>skpatra@chem.iitkgp.ernet.in</u>; Tel: +913222283338

1. Synthesis and Characterization	S2-S53
1a. Synthesis	S2-S12
1b. NMR spectra	S12-S42
1c. FTIR spectra	S42-S46
1d. MALDI-TOF MS	S47-S51
1e. CHN analysis	\$52-\$53
2. Photophysical studies	S54-S59
3. Electrochemical characterization	S60-S61
4. Thermal analysis	S62-S69
4a. DSC	S62-S64
4b. TGA	S65-S69
5. Crystallographic data	S69-S71
6. References	S 71

1. Synthesis and Characterization

1a. (i) Synthetic protocol

Scheme S1 Synthesis of 4

Reagents and conditions: a) NBS, FeCl₃, DMF, 90 °C, 12 h; b) $C_8H_{17}Br$, TBAI, aq. NaOH, toluene, 60 °C, 12 h; c) 1.1 eqv. of ethynyltrimethylsilane, 3 mol% CuI, 3 mol% Pd(PPh₃)₂Cl₂, ⁱPr₂NH, THF, Reflux.

Scheme S2 Synthesis of 6

Reagents and conditions: a) I_2 , KIO₃, H₂SO₄, AcOH, 90 °C, 12 h; b) C₈H₁₇Br, TBAI, aq. NaOH, toluene, 60 °C, 12 h.

Scheme S3 Synthesis of O1

Reagents and conditions: a) 2.5 eqv. of ethynyltrimethylsilane, 3 mol% CuI, 3 mol% Pd(PPh₃)₂Cl₂, Et₃N, THF, Reflux, 24 h; b) K₂CO₃, DCM, MeOH, 28 °C, 4 h; c) 2.2 eqv. of Bu₃SnCl, LDA, THF, -20 °C to 28 °C, 4 h; d) 2.5 eqv. of **4**, 3 mol% Pd(PPh₃)₄, THF, Reflux, 24 h.

Scheme S4 Synthesis of O2

Reagents and conditions: a) $C_6H_{13}Br$, *t*-BuOK, MeOH, 28 °C, 4 days; b) HBr, Br₂, 100 °C, 8 h; c) 2.5 eqv. of ethynyltrimethylsilane, 3 mol% CuI, 3 mol% Pd(PPh₃)₂Cl₂, Et₃N, THF, Reflux, 24 h; d) K₂CO₃, DCM, MeOH, 28 °C, 4 h; e) 2.2 eqv. of Bu₃SnCl, LDA, THF, -20 °C to 28 °C, 4 h; f) 2.5 eqv. of **4**, 3 mol% Pd(PPh₃)₄, THF, Reflux, 24 h.

Scheme S5 Synthesis of O3

Reagents and conditions: a) HBr, Br₂, 100 °C, 8 h; b) 2.5 eqv. of ethynyltrimethylsilane, 3 mol% CuI, 3 mol% Pd(PPh₃)₂Cl₂, Et₃N, DCM, 28 °C, 24 h; c) K₂CO₃, DCM, MeOH, 28 °C, 4 h; d) 2.2 eqv. Bu₃SnCl, LDA, THF, -20 °C to 28 °C, 4 h; e) 2.5 eqv. of **4**, 3 mol% Pd(PPh₃)₄, THF, Reflux, 24 h.

1a. (ii) Synthesis and Characterization

2,7-Dibromfluorene (**2**). Fluorene (2.493 g, 15 mmol), NBS (10.68 g, 60 mmol), ferric chloride (0.1 g, 0.6 mmol), and dry DMF (60 mL) were taken in a 250 mL Schlenk flask and heated to 90 °C for 12 h under dark condition. The resulting mixture was then poured into water and extracted with DCM. The organic layer was washed extensively with dilute hydrochloric acid 1N, sodium bicarbonate, and finally with water. The DCM extract was dried over anhydrous magnesium sulfate and the solvent was evaporated using rotary evaporator. The product was recrystallized from dry ethanol to get analytically pure 2,7-

dibromofluorene (2). Yield: 3.6 g (75%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.68 (s, 2H), 7.60 (d, *J*=8.0 Hz, 2H), 7.50 (d, *J*=8.0 Hz, 2H), 3.88 (s, 2H, CH₂ at 9-position of fluorene unit). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 144.7, 139.6, 130.1, 128.3, 121.2, 120.9, 36.5 (Carbon at 9-position of fluorene unit).

2,7-Dibromo-9,9-dioctylfluorene (3). 2,7- Dibromofluorene (1.00 g, 3.08 mmol) was reacted with *n*-bromooctane (1.48 g, 1.32 mL, 7.7 mmol) in a two-phase system composed of toluene (25 mL) and aqueous sodium hydroxide (50 % w/w , 20 mL) solution using TBAI (0.1 g, 0.27 mmol) as the phase transfer catalyst at 60 °C for 10 h under argon atmosphere. After diluting the reaction mixture with ethyl acetate, the organic layer was washed with brine solution followed by water. The separated organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography using hexane as eluent. Yield: 1.35 g (80%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.53-7.51 (m, 2H), 7.46-7.44 (m, 4H), 1.93-1.89 (m, 4H, octyl CH₂ attached to fluorene), 1.25-1.05 (m, 20H), 0.81 (t, *J*=8.0 Hz, 6H), 0.58-0.56 (m, 4H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 152.4, 138.9, 130.0, 126.1, 121.4, 121.0, 55.6 (Carbon at 9-position of fluorene unit), 40.0, 31.6, 29.8, 29.0, 23.5, 22.5, 13.9.

2-Bromo-7-((trimethylsilyl)ethynyl)-9,9-dioctylfluorene (4). To a solution of 35 mL of dry THF and 20 mL of diisopropylamine in a 100 mL Schlenk flask, 2,7-dibromo-9,9dioctylfluorene (2.19 g, 4.0 mmol) was added. After the addition of catalytic amount of CuI (0.02 g, 0.12 mmol), Pd(PPh₃)₂Cl₂ (0.08 g, 0.12 mmol) and trimethylsilylethyne (0.70 g, 7.2 mmol), the mixture was refluxed for 24 h under argon. After cooling to room temperature, the solvent was evaporated under reduced pressure. The residue was extracted with DCM and washed with water for two times. The combined organic layer after separation was then dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum to obtain the crude product. The crude product was purified by column chromatography (silica gel) using hexaness as an eluent to afford brown oil product. Yield: 1.35 g (60%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.60-7.51 (m, 2H, H_{Fl}), 7.47-7.41 (m, 4H, H_{Fl}), 1.96-1.88 (m, 4H, octyl CH₂ attached to fluorene), 1.15-1.01 (m, 20H, Hoctyl), 0.86-0.79 (m, 6H, Hoctyl), 0.58-0.51 (m, 4H, H_{octvl}), 0.28 (s, 9H, H_{TMS}). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 153.4, 150.4, 140.7, 139.6, 131.5, 130.3, 126.4, 126.3, 122.0, 121.8, 121.5, 119.7, 106.2, 94.4 (aromatic carbons), 55.6 (carbon at 9-position of Fl), 40.4, 31.9, 30.0, 29.4, 23.8, 22.8, 14.3 (alkyl carbons), 0.23 (C_{TMS}).

2,7-Diiodofluorene (5). A mixture of fluorene (0.5 g, 3 mmol), potassium iodate (0.32 g, 1.5 mmol) and iodine (1.90 g, 7.5 mmol) were stirred into a 250 mL Schlenk flask. Glacial acetic acid (30 mL) and 20 % aqueous sulfuric acid (3 mL) were added and the reaction mixture was heated at 90 °C under argon atmosphere. After 12 h, the reaction was cooled to 28 °C followed by addition of water (50 mL). The whole mixture was neutralized with 2M Na₂CO₃ solution and extracted with ether. The organic extract was washed with water and dried over anhydrous MgSO₄. After removal of solvent the product was purified by recrystallization from ethanol to obtain white solid product. Yield: 0.741 g (60%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.87 (s, 2H), 7.72-7.68 (m, 2H), 7.51-7.47 (m, 2H), 3.84 (s, 2H, CH₂ at 9-position of fluorene unit). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 145.0, 140.6, 136.2, 134.1, 121.8, 92.7, 36.5 (Carbon at 9-position of fluorene unit).

2,7-Diiodo-9,9-dioctylfluorene (6). 2,7- Diiodofluorene (0.84 g, 2.0 mmol) and catalytic amount of TBAI (0.07 g, 0.2 mmol) were dissolved in a solution of 35 mL DMSO and 12 mL of 50 % aqueous NaOH in a 100 mL Schlenk flask. After that, 1-bromooctane (0.97 g, 5 mmol) was added dropwise to the reaction mixture and was stirred at 60 °C for 12 h under argon atmosphere. The product was extracted with DCM and the organic layer washed with brine solution followed by water and dried over anhydrous MgSO4. The product was purified by column chromatography using hexane as eluent. Yield: 0.98 g (77%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.66-7.64 (m, 4H), 7.41-7.39 (m, 2H), 1.91-1.87 (m, 4H), octyl CH₂ attached to fluorene), 1.24-1.05 (m, 20H), 0.85-0.82 (m, 6H), 0.59-0.57 (m, 4H); ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 152.7, 140.0, 136.3, 132.3, 121.8, 93.4, 55.8 (Carbon at 9-position of fluorene unit), 40.3, 32.0, 30.1, 29.5, 29.3, 23.9, 22.9, 14.4.

2,7-Bis((trimethylsilyl)ethynyl)-9,9-dioctylfluorene (7). 2,7-Diiodo-9,9-dioctylfluorene (0.64 g, 1.0 mmol), CuI (0.010 g, 0.06 mmol), Pd(PPh₃)₂Cl₂ (0.04 g, 0.06 mmol) and trimethylsilylethyne (0.37 g, 3.8 mmol) were added to a solution of 10 mL of dry THF and 8 mL of diisopropylamine in a 100 mL Schlenk flask. The reaction mixture was refluxed for 24 h under argon atmosphere. The solvent was evaporated under reduced pressure. The residue was extracted with DCM and washed with distilled water for two times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The crude product was passed through a silica gel column using hexanes as the eluent. Evaporation of the solvent led to a brownish oil, which crystallized upon standing. The yellow solid product was recrystallized from distilled absolute ethanol to afford analytically pure 7. Yield: 0.45 g (65%). ¹H

NMR (CDCl₃, 400 MHz): δ 7.60-7.58 (m, 2H, H_{Fl}), 7.46-7.41 (m, 4H, H_{Fl}), 1.94-1.90 (m, 4H, octyl CH₂ attached to fluorene), 1.10–1.01 (m, 20H, H_{octyl}), 0.84-0.80 (m, 6H, H_{octyl}), 0.54-0.51 (m, 4H, H_{octyl}), 0.28 (s, 18H, H_{TMS}). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 150.9, 140.8, 131.2, 126.1, 121.7, 119.7 (aromatic carbons), 106.0 (-Fl-C=<u>C</u>-TMS), 94.2 (-Fl-<u>C</u>=C-TMS), 55.5 (carbon at 9-position of Fl), 40.3, 31.7, 22.6, 14.1 (alkyl carbons), 0.34 (C_{TMS}).

2,7-diethynyl-9,9-dioctylfluorene (8). In a 100 mL Schlenk flask compound **7** (0.25 g, 0.43 mmol) was dissolved in mixture of 10 mL of dry DCM and 6 mL of dry MeOH. To that K₂CO₃ (0.12 g, 0.86 mmol) was added and the reaction mixture was stirred at 28 °C for 4 h. The compound was extracted with DCM and the organic layer was washed with brine solution followed by distilled water. The organic part was dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure to obtain pale yellow solid product. Yield: 0.17 g (90%). ¹H NMR (CDCl₃, 400 MHz): δ 7.64-7.62 (m, 2H, H_{Fl}), 7.49-7.46 (m, 4H, H_{Fl}), 3.15 (s, 2H, acetylene proton), 1.95-1.91 (m, 4H, octyl CH₂ attached to fluorene), 1.26–1.02 (m, 20H, H_{octyl}), 0.84-0.80 (m, 6H, H_{octyl}), 0.58-0.54 (m, 4H, H_{octyl}). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 151.3, 141.2, 131.5, 126.8, 121.2, 120.2 (aromatic carbons), 84.8 (-Fl-<u>C</u>=C-H), 77.6 (C=<u>C</u>-H), 55.5 (carbon at 9-position of Fl), 40.5, 32.0, 30.2, 30.0, 29.4, 23.9, 22.8, 14.3 (alkyl carbons).

Synthesis of O1. In a 100 mL Schlenk flask diisopropylamine (0.15 mL, 1.08 mmol) and 3 mL of dry THF was taken and cooled to -78 °C. n-BuLi (0.60 mL, 0.90 mmol) was added dropwise and stirred at this temperature for 20 min. In another 100 mL Schlenk flask, "Bu₃SnCl (0.25 g, 0.77 mmol) was added to a solution of compound **8** (0.15 g, 0.35 mmol) in 4 mL of dry THF at -20 °C. The freshly prepared LDA solution was added dropwise to the reaction mixture through a cannula at -20 °C. Then the reaction mixture was stirred for 4 h at 28 °C. In another 100 mL Schlenk flask compound **4** (0.416 g, 0.735 mmol) and Pd(PPh₃)₄ (0.014 g, 0.012mmol) were stirred in 5 mL of dry THF. To it, the stannylated derivative of compound **8** was added dropwise through a cannula and the reaction mixture was refluxed for 24 h under argon. The solvent was evaporated under reduced pressure and the compound was extracted with diethyl ether, followed by addition of 5% KF solution in water to remove the unreacted stannyl derivative. The organic part was dried over anhydrous MgSO₄ and purified by column chromatography using silica gel (60-120) and hexanes

as an eluent to afford a yellow solid product. Yield: 0.305 g (62%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.70-7.44 (m, 18H, H_{Fl}), 2.02-1.95 (m, 12H, octyl CH₂ attached to fluorene), 1.21–1.01 (m, 60H, H_{octyl}), 0.86-0.81 (m, 18H, H_{octyl}), 0.62-0.55 (m, 12H, H_{octyl}), 0.29 (s, 18H, H_{TMS}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 151.2, 150.9, 141.0, 140.8, 131.3, 130.8, 130.7, 126.3, 125.9, 122.1, 122.0, 121.8, 120.1, 119.9 (aromatic carbons), 106.2 (-Fl-C=C-TMS), 94.3 (-Fl-C=C-TMS), 90.9 (-C=C-Fl-C=C-TMS), 55.3 (carbon at 9-position of Fl), 40.5, 31.9, 30.1, 29.3, 23.7, 22.7, 14.1 (alkyl carbons), 1.08, 0.12 (C_{TMS}); FTIR (KBr, cm⁻¹): 2152 (vc=c stretching); MALDI-TOF MS (m/z): C₁₀₁H₁₃₈Si₂ Calculated 1408.041 ([M+H]⁺); Experimental 1408.088 ([M+H]⁺); Anal. Calc. for C₁₀₁H₁₃₈Si₂: C, 86.14; H, 9.88. Found: C, 85.81, H, 10.09; UV-Vis λ_{max} : 386 nm (ϵ = 12.46×10⁴ M⁻¹cm⁻¹); $\lambda_{em}(\lambda_{ex})$: 413(386) nm.

2-Hexylbenzotriazole (**11**). In a 250 mL Schlenk flask 1,2,3-benzotriazole (5.0 g, 42.0 mmol), potassium tert-butoxide (4.94 g, 44.0 mmol), and hexylbromide (11.1 g, 67.0 mmol) were dissolved in anhydrous methanol (20 mL). The reaction mixture was stired for 4 days at 28 °C under argon. After removal of the solvent by evaporation, the residue was dissolved in DCM and the organic layer was washed with brine solution followed by distilled water. The organic part was dried over anhydrous MgSO₄ and the solvent was evaporated by rotary evaporator. The crude product was purified by silica gel (60-120) column chromatography using hexane as the eluent to obtain **11** as a light yellow liquid product. Yield: 3.16 g (37%). ¹H NMR (CDCl₃, 200 MHz): δ 7.89-7.82 (m, 2H, H_{Btz}), 7.42-7.33 (m, 2H, H_{Btz}), 4.76-4.68 (t, *J*= 8.0 Hz, 2H, (Btz)N-<u>CH</u>₂-C₅H₁₁), 2.14-2.08 (m, 2H, (Btz)N-CH₂-C₄H₉), 1.39–1.28 (m, 6H, H_{hexyl}), 0.90-0.83 (m, 3H, H_{hexyl}). ¹³C{¹H} NMR (CDCl₃, 50 MHz): δ (ppm) 144.3, 126.0, 118.0, 56.6, 31.2, 30.0, 26.2, 22.4, 14.0.

4,7-Dibromo-2-hexylbenzotriazole (12). 2-Hexylbenzotriazole (1.02 g, 5.0 mmol) and 47 % aqueous HBr solution (6 mL) were added to a 100 mL two-necked round-bottomed flask, and the mixture was stirred for 1 h at 100 °C. Bromine (3.19 g, 20.0 mmol) was added very slowly to the mixture and it was heated to 135 °C for 12 h. After that, the reaction mixture was cooled to room temperature. Aqueous solution of NaHCO₃ was added and the product was extracted with DCM. The organic layer was dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel (60-120) column chromatography using hexane as eluent to obtain yellow oil product. Yield: 1.38 g (76%). ¹H NMR (CDCl₃, 200 MHz): δ 7.50 (s, 2H, H_{Btz}), 4.80-4.76 (t, *J*= 8.0 Hz, 2H,

(Btz)N-<u>CH</u>₂-C₅H₁₁), 2.17-2.11 (m, 2H, (Btz)N-CH₂-<u>CH</u>₂-C₄H₉), 1.55–1.34 (m, 6H, H_{hexyl}), 0.91-0.85 (m, 3H, H_{hexyl}). ¹³C{¹H} NMR (CDCl₃, 50 MHz): δ (ppm) 143.6, 129.5, 110.0, 57.5, 31.2, 30.2, 26.3, 22.5, 14.1.

2-Hexyl-4,7-bis(trimethylsilyl)ethynyl)benzotriazole (13). 4,7-Dibromo-2hexylbenzotriazole (1.08 g, 3.0 mmol) was dissolved in a mixture of 15 mL of dry THF and 10 mL of NEt₃ in a 100 mL Schlenk flask. Catalytic amount of CuI (0.02 g, 0.09 mmol), Pd(PPh₃)₂Cl₂ (0.06 g, 0.09 mmol) and trimethylsilylethyne (1.06 g, 10.8 mmol) were added to the solution. The reaction mixture was refluxed for 24 h under argon. After cooling to room temperature, the solvent was evaporated under reduced pressure and the compound was extracted with EtOAc. The organic part was washed with water and dried over anhydrous MgSO₄. The solvent was evaporated and the crude product was passed through a column of silica gel (60-120) using 2% EtOAc in hexanes as the eluent. Evaporation of the solvent led to a brown oil product. Yield: 0.77 g (65%). ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (s, 2H, H_{Btz}), 4.78-4.74 (t, J= 8.0 Hz, 2H, (Btz)N-CH₂-C₅H₁₁), 2.17-2.13 (m, 2H, (Btz)N-CH₂-CH₂-C₄H₉), 1.38-1.34 (m, 6H, H_{hexyl}), 0.91-0.88 (m, 3H, H_{hexyl}), 0.31 (s, 18H, H_{TMS}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 144.4, 130.8, 114.1 (aromatic carbons), 102.2 (Btz-C=C-TMS), 100.5 (Btz-C=C-TMS), 57.1 ((Btz)N-CH₂-C₅H₁₁), 31.4, 30.2, 26.4, 22.6, 14.2 (alkyl carbons), 0.16 (C_{TMS}).

4,7-diethynyl-2-hexylbenzotriazole (14). In a 100 mL Schlenk flask compound **13** (0.19 g, 0.5 mmol) was dissolved in a solution of 10 mL of DCM and 6 mL of MeOH. The reaction mixture was stirred at 28 °C for 4 h after addition of K₂CO₃ (0.14 g, 1.0 mmol). The compound was extracted with DCM and the organic layer washed with brine solution followed by distilled water and dried over anhydrous MgSO₄. The crude product was purified by silica gel (60-120) column chromatography using hexanes as eluent. Yield: 0.11 g (91%). ¹H NMR (CDCl₃, 200 MHz): δ 7.50 (s, 2H, H_{Btz}), 4.81-4.73 (t, *J*= 8.0 Hz, 2H, (Btz)N-<u>CH</u>₂-C₅H₁₁), 3.58 (s, 2H, -Btz-C=C-<u>H</u>), 2.15-2.05 (m, 2H, (Btz)N-CH₂-<u>C</u>₄H₉), 1.39–1.31 (m, 6H, H_{hexyl}), 0.93-0.85 (m, 3H, H_{hexyl}).; ¹³C{¹H} NMR (CDCl₃, 50 MHz): δ (ppm) 144.7, 130.7, 113.5 (aromatic carbons), 84.4 (Btz-C=<u>C</u>-H), 79.3 (Btz-<u>C</u>=C-H), 57.4 ((Btz)N-<u>C</u>H₂-C₅H₁₁), 31.4, 30.5, 26.4, 22.6, 14.1 (alkyl carbons).

Synthesis of O2. It was synthesized using a similar procedure as that for **O1** taking **14** (0.20 g, 0.8 mmol), ⁿBu₃SnCl (0.57 g, 1.76 mmol), 4 (1.13 g, 2.0 mmol) and Pd(PPh₃)₄

(0.08 g, 0.07 mmol). The resulting crude product was purified by column chromatography using silica gel (60-120) and EtOAC/hexanes (5/95) to afford O2 as a dark yellow solid product. Yield: 0.59 g (61%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.69-7.61 (m, 10H, H_{Btz & Fl)}, 7.48-7.44 (m, 4H, H_{Btz & Fl}), 4.87-4.83 (t, J= 8Hz, 2H, (Btz)N-CH2-C5H11), 2.24-2.21 (m, 2H, (Btz)N-CH2-CH2-C4H9), 2.05-1.96 (m, 8H, octyl CH2 attached to fluorene), 1.29-1.04 (m, 46H, H_{hexyl & octyl}), 0.84-0.80 (m, 15H, H_{hexyl & octyl}), 0.62-0.58 (m, 8H, H_{octyl}), 0.29 (s, 18H, H_{TMS}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 151.3, 151.3, 144.6, 141.4, 141.1, 139.4,131.5, 131.4, 130.3, 126.5, 122.2, 121.9, 120.2, 120.1, 114.3, 114.1 (aromatic carbons), 106.3 (FI-C=C-TMS), 97.7 (Btz-C=C-Fl), 94.6 (Btz-C=C-Fl), 86.0 (Fl-C=C-TMS), 57.4 ((Btz)N-<u>CH</u>₂-C₅H₁₁), 55.6 (carbon at 9-position of Fl), 40.7, 34.1, 32.2, 31.9, 31.4, 30.5, 30.2, 29.9, 29.5, 29.2, 26.5, 23.9, 22.9, 22.7, 14.3 (alkyl carbons), 1.26, 0.29 (Стмs); FTIR (KBr, cm⁻¹): 2151 ($v_{C=C}$ stretching); MALDI-TOF MS (m/z): C₈₄H₁₁₃N₃Si₂ Calculated 1220.855 ([M+H]⁺); Experimental 1220.905 ([M+H]⁺); Anal. Calc. for C₈₄H₁₁₃N₃Si₂: C, 82.63; H, 9.33, N, 3.44. Found: C, 81.48, H, 9.58, N, 3.14; UV-Vis λ_{max}: 403 nm (ε $= 7.89 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$; $\lambda_{\text{em}}(\lambda_{\text{ex}})$: 449(403) nm.

4,7-Dibromobenzo-thiadiazole (**17**). Benzothiadiazole (1.0 g, 7.3 mmol) and 47 % aqueous HBr solution (15 mL) were added to a 100 mL two neck R.B flask, and the mixture was stirred for 1 h at 100 °C. Bromine (4.682 g, 29.2 mmol) was added very slowly and the mixture was refluxed for 12 h. After that, the reaction mixture was cooled to room temperature. Aqueous solution of NaHCO₃ was added and the product was extracted with CHCl₃. The organic layer was washed with water and dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using hexane as eluent to obtain light yellow solid product Yield: 1.98 g (92%). ¹H NMR (CDCl₃, 400 MHz): δ 7.73(s, 2H, benzothiadiazole protons), ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 152.6, 132.1, 113.6.

4,7-bis(**2**(**trimethylsilyl**)**ethynyl**)**benzothiadiazole** (**18**). In a 100 mL Schlenk flask compound **17** (580 mg, 2.0 mmol), Pd(PPh₃)₂Cl₂ (42 mg, 0.06 mmol), CuI (12 mg, 0.06 mmol), trimethylsilylethyne (690 mg, 7.0 mmol) were treated in 8 mL of dry DCM and 5 mL of Et₃N stirred at 28 °C for 24 h. The compound was extracted with DCM and the organic layer washed with water and dried over anhydrous MgSO₄. The crude product was purified by silica gel (60-120) column chromatography using hexane as a eluent; Yield: 490 mg (74%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.70 (s, 2H, H_{Btd}), 0.33 (s, 18H, H_{TMS});

¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 154.5, 133.4, 117.6, 103.9 (Btd-C=<u>C</u>-TMS), 100.3 (Btd-<u>C</u>=C-TMS), 0.14 (-C_{TMS}).

4,7-diethynylbenzothiadiazole (**19**). In a 100 mL Schlenk flask compound **18** (0.20 g, 0.6 mmol) was dissolved in a mixture of 10 mL of dry DCM and 6 mL of dry MeOH. Then K₂CO₃ (0.17 g, 1.21 mmol) was added to it and the reaction mixture was stirred at 28 °C for 4 h. The compound was extracted with DCM and the organic layer washed with brine solution followed by distilled water and dried over anhydrous MgSO₄. The crude product was purified by silica gel (60-120) column chromatography using hexane as eluent. Yield: 0.10 g (90%). ¹H NMR (CDCl₃, 200 MHz): δ (ppm) 7.76 (s, 2H, H_{Btd}), 3.68 (s, 2H, Btd-C=C-<u>H</u>); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 153.6, 134.2, 114.5, 85.3 (Btd-C=<u>C</u>-H), 79.8 (Btd-<u>C</u>=C-H).

Synthesis of O3. It was synthesized analogously to O1 using compound 19 (0.09 g, 0.5 mmol), ⁿBu₃SnCl (0.36 g, 1.1 mmol), 4 (0.71 g, 1.25 mmol) and Pd(PPh₃)₄ (0.05 g, 0.04 mmol). The resulting crude product was purified by column chromatography using silica gel (60-120) and EtOAC/hexanes (5/95) to afford red solid product. Yield: 0.37 g (64%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.85 (s, 2H, H_{Btd}), 7.69-7.63 (m, 8H, H_{Fl}), 7.49-7.45 (m, 4H, H_{Fl}), 2.05-1.91 (m, 8H, octyl CH₂ attached to fluorene), 1.25–1.04 (m, 40H, H_{octvl}), 0.83-0.80 (m, 12H, H_{octvl}), 0.64-0.51 (m, 8H, H_{octvl}), 0.31 (s, 18H, H_{TMS}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 154.6, 151.4, 151.3, 141.7, 141.0, 132.7, 131.5, 126.5, 122.3, 121.4, 120.3, 120.2, 117.4 (aromatic carbons), 106.3 (Fl-C≡C-TMS), 99.0 (Btd-C≡C-Fl), 94.7 (Btd-C≡C-Fl), 86.0 (Fl-C≡C-TMS), 55.6 (carbon at 9-position of Fl), 40.6, 32.0, 30.2, 29.9, 29.5, 29.4, 23.9, 22.8, 14.3 (alkyl carbons), 1.24, 0.27 (C_{TMS}); FTIR (KBr, cm⁻¹): 2152 ($v_{C=C}$ stretching); MALDI-TOF MS (m/z): C₇₈H₁₀₀N₂SSi₂; Calculated 1152.714 ([M]⁺). Experimental 1152.766 ([M]⁺); Anal. Calc. for C₇₈H₁₀₀N₂SSi₂: C, 81.19; H, 8.74, N, 2.43. Found: C, 80.36, H, 9.31, N, 2.25. UV-Vis λ_{max} : 445 nm ($\epsilon = 4.8 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$); $\lambda_{em}(\lambda_{ex})$: 547 (445) nm.

Synthesis of OH1. In a 100 mL Schlenk flask compound O1 (0.17 g, 0.12 mmol) was added in a mixture of 8 mL of dry DCM and 5 mL of dry MeOH. K_2CO_3 (0.03 g, 0.24 mmol) was added and the reaction mixture was stirred at 28 °C for 4 h under argon. The compound was extracted with DCM and the organic layer was washed with brine solution followed by distilled water. The organic part was dried over anhydrous MgSO₄ and purified by silica gel (60-120) column chromatography using hexanes as

eluent to obtain yellow solid product. Yield: 0.14 g (92%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.71-7.49 (m, 18H, H_{Fl}), 3.17 (s, 2H, -C=C-<u>H</u>), 2.00-1.97 (m, 12H, octyl CH₂ attached to fluorene), 1.30-1.06 (m, 60H, H_{octyl}), 0.85-0.82 (m, 18H, H_{octyl}), 0.66-0.58 (m, 12H, H_{octyl}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): 151.4, 151.2, 141.4, 140.9, 140.7, 131.8, 131.5, 131.0, 128.6, 126.7, 126.2, 122.4, 122.2, 120.9, 120.3, 120.1 (aromatic carbons), 91.1 (-Fl-C=<u>C</u>-FL-<u>C</u>=C-Fl-), 84.8 (-Fl-C=<u>C</u>-H), 77.5 (-Fl-<u>C</u>=C-H), 55.5 (carbon at 9-position of Fl), 40.6, 32.0, 30.2, 29.5, 23.9, 22.8, 14.3 (alkyl carbons); FTIR (KBr, cm⁻¹): 2102 ($\nu_{C=C}$ stretching); MALDI-TOF MS (m/z): C₉₅H₁₂₂; Calculated 1263.954 ([M+H]⁺); Experimental 1263.841 ([M+H]⁺). UV-Vis λ_{max} : 384 nm (ϵ = 9.25×10⁴ M⁻¹cm⁻¹); $\lambda_{em}(\lambda_{ex})$: 412, 433 (384) nm.

Synthesis of OH2. OH2 was prepared using a similar procedure as that for **OH1** using **O2** (0.19 g, 0.16 mmol) and K₂CO₃ (0.04 g, 0.32 mmol). It was purified by silica gel (60-120) column chromatography using EtOAc/ hexanes as eluent to afford dark yellow solid of **OH2.** Yield: 0.16 g (91%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.71-7.48 (m, 14H, H_{Btz, Fl}), 4.87- 4.83 (t, J = 8Hz, 2H, (Btz)N-CH₂-C₅H₁₁), 3.17 (s, 2H, -Fl-C=C-<u>H</u>), 2.25- 2.21 (t, J = 8Hz, 2H, (Btz)N-CH₂-C4H₉) 2.00-1.99 (m, 8H, octyl CH₂ attached to fluorene), 1.43–1.05 (m, 46H, H_{hexyl, octyl}), 0.83-0.80 (m, 15H, H_{hexyl, octyl}), 0.62-0.56 (m, 8H, H_{octyl}); ¹³C{¹H} NMR (CDCl₃, 100 MHz): 151.3, 144.5, 141.3, 141.2, 131.5, 131.4, 130.3, 126.6, 126.5, 121.9, 121.0, 120.3, 120.2, 114.0 (aromatic carbons), 97.6 (-Fl-C=C-Btz-C=C-Fl-), 86.0 (-Fl-C=C-Btz-C=C-Fl-), 84.8 (-Fl-C=C-H), 77.6 (-Fl-C=C-H), 57.4 ((Btz)N-CH₂-C₅H₁₁), 55.5 (carbon at 9-position of Fl), 40.6, 32.0, 30.4, 30.2, 29.4, 26.5, 23.9, 22.8, 14.3 (alkyl carbons); FTIR (KBr, cm⁻¹): 2106 ($\nu_{C=C}$ stretching}); MALDI-TOF MS (m/z): C₇₈H₉₇N₃; Calculated 1076.768 ([M+H]⁺); Experimental 1076.585 ([M+H]⁺). UV-Vis λ_{max} : 401 nm ($\varepsilon = 5.57 \times 10^4$ M⁻¹cm⁻¹); $\lambda_{em}(\lambda_{ex})$: 441, 463 (401) nm.

Synthesis of OH3. OH3 was prepared analogously to OH1 using O3 (0.23 g, 0.2 mmol) and K₂CO₃ (0.05 g, 0.4 mmol). It was purified by silica gel (60-120) column chromatography using EtOAc/ hexanes as eluent to afford red solid of OH3. Yield: 0.18 g (92%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.85 (s, 2H, H_{Btd}), 7.73-7.46 (m, 12H, H_{Fl}), 3.17 (s, 2H, -Fl-C=C-<u>H</u>), 2.01-1.97 (m, 8H, octyl CH₂ attached to fluorene), 1.43–1.05 (m, 40H, H_{octyl}), 0.83-0.80 (m, 12H, H_{octyl}), 0.62-0.55 (m, 8H, H_{octyl}),; ¹³C{¹H} NMR (CDCl₃, 100 MHz): 154.6, 151.4, 141.6, 141.2, 132.7, 131.5, 126.8, 126.5, 121.5, 121.2, 120.4, 120.2, 117.4 (aromatic carbons), 98.9 (-Fl-C=<u>C</u>-Btd-<u>C</u>=C-

Fl-), 86.0 (-Fl-<u>C</u>=C-Btd-C=<u>C</u>-Fl-), 84.7 (-Fl-C=<u>C</u>-H), 77.7 (-Fl-<u>C</u>=C-H), 55.6 (carbon at 9-position of Fl), 40.5, 32.0, 30.2, 29.9, 29.4, 23.9, 22.8, 14.3 (alkyl carbons); FTIR (KBr, cm⁻¹): 2107 ($\nu_{C=C \text{ stretching}}$); MALDI-TOF MS (m/z): C₇₂H₈₄N₂S; Calculated 1009.635 ([M+H]⁺); Experimental 1009.524 ([M+H]⁺). UV-Vis λ_{max} : 445 nm ($\epsilon = 2.6 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}$); $\lambda_{\text{em}}(\lambda_{\text{ex}})$: 542 (445) nm.

Fig. S1¹H NMR (400 MHz, CDCl₃) spectrum of 2

Fig. S3 ¹H NMR (400 MHz, CDCl₃) spectrum of 3

Fig. S5 ¹H NMR (400 MHz, CDCl₃) spectrum of 5

Fig. S9 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 6

Fig. S11 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of 7

Fig. S13 1 H NMR (400 MHz, CDCl₃) spectrum of 4

Fig. S14 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of 4

Fig. S15 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 4

L1.82

Skp_sni_2184

Fig. S17 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of 8

Fig. S19 ¹H NMR (400 MHz, CDCl₃) spectrum of O1

Fig. S21 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of O1

skp/sni/2319

Fig. S23 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of OH1

Fig. S25 ${}^{31}P{}^{1}H$ NMR (CDCl₃, 162 MHz) spectrum of OM1

skp/sni/2224r1

Fig. S26 ¹H NMR (600 MHz, CDCl₃) spectrum of OM1

Fig. S27 $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃) spectrum of OM1

Fig. S29 1 H NMR (200 MHz, CDCl₃) spectrum of 11

Fig. S31 ¹H NMR (400 MHz, CDCl₃) spectrum of 13

Fig. S33 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 13

Fig. S35 ¹H NMR (400 MHz, CDCl₃) spectrum of O2

Fig. S37 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of O2

Fig. S39 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of OH2

Fig. S40 DEPT-135 NMR (100 MHz, CDCl₃) spectrum of OH2

Skp_sni_2233f3

Fig. S41 $^{31}P\{^{1}H\}$ NMR (CDCl₃, 162 MHz) spectrum of OM2

Fig. S42 ¹H NMR (600 MHz, CDCl₃) spectrum of OM2

Fig. S43 $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃) spectrum of OM2

Fig. S44 DEPT-135 NMR (150 MHz, CDCl₃) spectrum of OM2

Fig. S45 ¹H NMR (400 MHz, CDCl₃) spectrum of 17

Fig. S46 ¹H NMR (400 MHz, CDCl₃) spectrum of 18

Fig. S47 ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 18

Fig. S49 ¹H NMR (400 MHz, CDCl₃) spectrum of 19

Fig. S50 1 H NMR (400 MHz, CDCl₃) spectrum of O3

Fig. S51 $^{13}C{^1H}$ NMR (100 MHz, CDCl₃) spectrum of O3

Fig. S53 ¹H NMR (400 MHz, CDCl₃) spectrum of OH3

Fig. S54 ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of OH3

Fig. S55 DEPT-135 NMR (100 MHz, $CDCl_3$) spectrum of OH3

Fig. S57 ¹H NMR (600 MHz, CDCl₃) spectrum of OM3

Fig. S59 DEPT-135 NMR (150 MHz, CDCl₃) spectrum of OM3

Fig. S60 ¹H NMR (400 MHz, CDCl₃) spectra of OH1, OH2 and OH3

1c. FTIR Spectra

Fig. S61 FTIR spectrum of O1

Fig. S65 FTIR spectrum of OH2

Fig. S67 FTIR spectrum of O3

Fig. S69 FTIR spectrum of OM3

1d. MALDI-TOF MS spectrometry

Fig. S71 MALDI-TOF mass spectrometry of O2

Fig. S73 MALDI-TOF mass spectrometry of OH1

Fig. S77 MALDI-TOF mass spectrometry of OM2

Fig. S78 MALDI-TOF mass spectrometry of OM3

1e. CHN analysis

Compound	CHN data
01	DATE 30 11 15 TIME 12 40 27 OPERATOR ID CHEMISTRY
	ID SKP SNI 2204 WEIGHT 1.932
	SIGNALS
	ZR 5551 (CARBON 85.81% NR 6579 HYDROGEN 10.09% CR 28597 NITROGEN .20% HR 35270
02	
02	DATE 30 11 15 TIME 12 34 34 OPERATOR ID CHEMISTRY
	(ID SKP SNI 2229 WEIGHT 1.934
	SIGNALS
	(HYDROGEN 9.58% CR 27713
	NITRUBEN 3.14% HR 34070
03	
05	DATE 27 11 15 TIME 14 25 21 OPERATOR ID CHEMISTRY
	(ID SKP SNI 2222 WEIGHT 1.716
	STENDIS
	CARBON 78.38% NR 6263
	HYDROGEN 8.68% CR 24812 NITROGEN 2.13% HR 29972
	(
OM1	
UMI	DATE 11 12 15 TIME 15 48 33 OPERATOR IN CULTURE
	ID SKP SNI22242 HEIGHT + 250
	. SIGNALS
	CARBON 65.24% ZR 4949
	HYDROGEN 7.24% CR 22627
	nr 27200 (,
OM2	
	DATE 27 11 15 TIME 15 05 37 OPERATOR ID CHEMISTRY
	ID SKP SNI 2233 WEIGHT 1.880
	SIGNALS
	ZR 5225
	CHRBUN 67.48% NR 6513 HYDROGEN 6.66% CR 24077
	NITROGEN 2.36% HR 28374
OM3	DATE 27 11 15 TIME 14 48 52 OPERATOR ID CHEMISTRY
	ID SKP SNI 2228 WEIGHT .906
	CARBON 67.21% NR 5949
	HYDROGEN 6.04% CR 14349 NITROGEN 2.13% HR 16384

In elemental analysis of **OM1**, even after repeated attempt, identical result was observed with 6.9% less in 'C'. This is presumably due to the formation of Au particles embedded in the carbon matrix (generated from fluorenyl-alkynyl moieties). It is also supported by the formation of residual in crucible after TGA analysis (as depicted in Fig S79)

while heating **OM1** from RT to 700 °C (at 5 °C/ min). Formation of Au particle was confirmed by SEM and Energy Dispersive X-ray (EDX) analyses.

Fig. S79 Images of crucibles after thermal analyses

Fig. S80 SEM and EDX analyses of the residual part after TGA analysis of OM1.

2. Photophysical studies

Determination of Quantum yield:

All the UV-vis absorption and fluorescence emission spectra were collected using a Shimadzu UV-vis spectrophotometer (model UV 2450 and a Spex Fluorolog-3 spectrofluorimeter (model FL3-11) respectively. Throughout all the measurements, the concentration were maintained at ($\sim 1 \times 10^{-5}$) M. The PL quantum yields were calculated by using the absolutely measured quantum yield of quinine sulphate in 0.1 M H₂SO₄ solution as reference at 298 K. The phosphorescence quantum yields were calculated by using the absolutely measured quantum yield of 9,10-diphenylanthracene in degassed CH₂Cl₂ at 77 K. In both the cases, the sample and standard concentrations were adjusted to obtain an absorbance of 0.1 or less. The following equation was used to calculate the quantum yields¹:

$$\frac{\Phi_S}{\Phi_R} = \frac{A_S}{A_R} \times \frac{(Abs)_R}{(Abs)_S} \times \frac{\eta_S^2}{\eta_R^2}$$

Here Φ represents the quantum yield, (Abs) represents the absorbance, A represents the area under the fluorescence curve, and η is the refractive index of the medium. The subscript S and R denote the corresponding parameters for the sample and reference respectively.

Fig. S81 (a) Absorption and (b) emission spectra of **OH1-OH3** and **OM1-OM3** in degassed 1,2-DCE at 298 K. (c), (d) and (e) emission spectra of **OM1-OM3** in degassed DCM at 77 K.

Preparation of thin film for solid state absorption measurement:

The quartz substrates (17 x 15 x 1 mm³) were cleaned in a fresh piranha solution (7:3 mixture of 98% H₂SO₄and 30% H₂O₂), washed with Milli-Q water, and followed by ultrasonication in alkaline isopropanol and 0.1 M aqueous HCl at 60 °C for 1 h each. After careful washing with Milli-Q water, thin film of the compounds was prepared by spin coating on quartz plate. Compound solution in toluene (10^{-3} M) was dropped on quartz plate and it was spin coated at 1000 rpm for 60 second.

Fig. S82 Normalized absorption spectra of **O1-O3** (a) in degassed 1,2-DCE (b) in Thin film (coated on quartz plate)

Table S1. Absorbance d	data (of O1-O3
------------------------	--------	-----------------

		Absorption		
Compound	Solution		Thin flim	
	λ_{max} in nm ($\epsilon \times 10^4$ L.mol ⁻¹ cm ⁻¹)	λ_{max} , nm	λ_{max} cut off	Eg in eV (Optical)
01	302 (3.83), 374 (11.99), 386	300, 375,	437	2.83
	(12.46)	389, 404 (sh)		
02	307 (4.94), 341 (5.14), 403	308, 342,	459	2.70
	(7.89), 430 (sh)	408, 435		
03	326 (sh), 340 (9.29), 445 (4.80)	292 (sh), 343,	521	2.38
		456		

Fig. S83 Normalized PL spectra of **O1-O3** (a) in degassed 1,2-DCE (b) in Thin film (coated on quartz plate)

Fluorescence Solution Thin flim Quantum Yield (Φ) Stokes Shift, nm Compound λ_{em} (λ_{ex}), nm λ_{em} (λ_{ex}), nm 462, 489 (389) 01 412, 434 (sh) (386) 0.39 26 441, 463 (403) 02 0.37 38 505 (408) 0.24 100 03 545 (445) 563 (456)

Table S2. Fluorescence data of O1-O3

Fig. S84 Visual appearance of **OH3** in presence of different polar solvent under UV illumination at 365 nm.

Fig. S85 Normalized PL spectra of OH3 in solvent with different polarity

Table 55. Filotophysical properties of OH5 in unterent solvents (~1x10 - 1x1)					
Solvent	λ_{max}, nm	λ_{em} (λ_{ex}), nm	Quantum Yield (Φ)	Stokes Shift, cm ⁻¹	FWHM, nm
Hexane	444	502 (444)	0.32	2602	66
CCl ₄	447	514 (447)	0.31	2916	71
Toluene	446	517 (446)	0.31	3079	72
Xylene	443	517 (443)	0.30	3231	72
Benzene	445	520 (445)	0.30	3241	74
DCM	445	545 (445)	0.26	4123	88
1,2-DCE	445	547 (445)	0.26	4190	89
THF	442	528 (442)	0.28	3685	80
Chloroform	450	551 (450)	0.25	4073	91
EtOAc	440	539 (440)	0.26	4174	84
Acetone	439	542 (439)	0.25	4328	86

Table S3. Photophysical properties of OH3 in different solvents (~1x10⁻⁵ M)

Fig. S86 Visual appearance of **OM3** in presence of different polar solvent under UV illumination at 365 nm.

Solvent	λ_{max} , nm	$\overline{\lambda_{em}}(\lambda_{ex}), nm$	Quantum Yield (Φ)	Stokes Shift, cm ⁻¹	FWHM,
					nm
Hexane	446	508 (446)	0.21	2736	67
CCl ₄	451	526 (451)	0.19	3161	76
Toluene	448	529 (448)	0.20	3417	78
Xylene	447	531 (447)	0.18	3538	79
Benzene	449	532 (449)	0.17	3474	80
DCM	452	562 (452)	0.14	4330	97
1,2-DCE	453	564 (453)	0.13	4344	100
THF	449	544 (449)	0.16	3889	88
Chloroform	455	568 (455)	0.13	4372	105
EtOAc	447	550 (447)	0.16	4189	90
Acetone	451	561 (451)	0.12	4347	95

Table S4. Photophysical properties of OM3 in different solvents (~1x10⁻⁵ M)

Fig. S87 Normalized PL spectra of (a) OH1 and (b) OH2 in solvent with different polarity

Fig. S88 Concentration dependent PL spectra of (a) **OH1** (b) **OH2** (c) **OH3** in 1,2-DCE (1 x 10^{-3} M to 1 x 10^{-6} M).

Fig. S89 Time resolved fluorescence spectra of (a) O1-O3 and (b) OH1-OH3

Compound	Lifetime				
	τ_1 (A ₁), ns	τ_2 (A ₂), ns	$\langle \tau_{av} \rangle$, ns	$k_r^{a}(\times 10^8), S^{-1}$	$k_{nr}^{b}(\times 10^{9}), S^{-1}$
01	0.46 (97%)	1.0 (3%)	0.48	8.13	1.27
02	0.74 (63%)	1.05(37%)	0.85	4.35	0.74
03	1.04 (15%)	3.16 (85%)	2.84	0.85	0.70
OH1	0.51 (100%)	-		8.23	1.14
OH2	0.98 (100%)	-		3.98	0.62
OH3	3.18 (100%)	-		0.82	0.23
OM1	0.42 (98%)	0.99 (2%)	0.43	6.28	1.69
OM2	0.73 (70%)	1.05 (30%)	0.83	2.53	0.95
OM3	0.85 (19%)	3.12 (81%)	2.69	0.48	0.32

Table S5. Fluorescence lifetimes of O1-O3, OH1-OH3 and OM1-OM3

 $^{a}k_{r}=\Phi/\tau$, $^{b}k_{nr}=(1-\Phi)/\tau$ and $\tau_{av}=(A_{1}/A_{1}+A_{2})\tau_{1}+(A_{2}/A_{1}+A_{2})\tau_{2}$

Fig. S90 The emission spectra of (a) **OM1** (b) **OM2** and (c) **OM3** at 77 K. (Black line : In degassed DCM solution; Red line: after saturation of the DCM solution with oxygen; Blue line : after deoxygenating the DCM solution with argon gas).

3. Electrochemical characterization

Cyclic Voltammetry (CV) and Differntial Pulse Voltammetry (DPV) analyses for the oligomers and the Au(I) complexes as film were carried out in CH₃CN using ⁿBu₄NPF₆ (0.1 M) as supporting electrolyte, Pt wire counter electrode and Ag/AgCl reference electrode. The film of the oligomers (**OH1-OH3**) and their Au(I) complexes (**OM1-OM3**) were prepared by drop casting the corresponding DCM solution on GC-disc electrode.

Fig. S91 Cyclic Voltamogram of acetonitrile (blank run) using ${}^{n}Bu_{4}NPF_{6}$ as supporting electrolyte, GC disc working electrode, Pt wire auxiliary electrode and Ag/AgCl reference electrode. Scan rate: 100 mV/s.

Fig. S92 Cyclic Voltamogram (blue line) and Differntial Pulse Voltammetry (dotted red line) of films (drop casted on GC disc working electrode) of a) **OH1** b) **OH2** c) **OH3** d) **OM1** e) **OM2** and f) **OM3**.

Compound	E _{ox} (V)	$E_{ox}^{onset}(V)$	$E_{red}(V)$
OH1	1.26	1.16	
OH2	1.29	1.14	
OH3	1.33	1.19	$E_{1/2} = -1.17(80)^{b}$
			(reversible)
OM1	1.19	1.09	
OM2	1.25	1.08	
OM3	1.31	1.17	$E_{1/2} = -1.17$ (quasi-
			reversible)

Table S6. Electrochemical data of **OH1-OH3** and **OM1-OM3**^a carried out in CH₃CN as film on GC disc working electrode.^a

^aCyclic Voltamogram of film of the samples, drop casted on GC disc working electrode using, ⁿBu₄NPF₆ as supporting electrolyte in CH₃CN, Pt wire auxiliary electrode and Ag/AgCl reference electrode. Scan rate 100 mV/s. ^bHalf-wave potentials evaluated from cyclic voltammetry as $E_{1/2} = (E_{pa} + E_{pc})/2$, peak potential difference in mV in parentheses.

Table S7. Electrochemical data of OH1-OH3 and OM1-OM3 in DCM solution.^a

Compound	E _{ox} , V	E _{red}
OH1	1.27	
OH2	1.31	
OH3	1.34	$E_{1/2} = -1.17(90)$
		(reversible)
OM1	1.21	
OM2	1.26	
OM3	1.29	$E_{1/2} = -1.16$ (quasi-
		reversible)

^aCV measurement was carried in DCM using Pt disc working electrode, TBAPF₆ (0.1 M) as supporting electrolytes, Pt wire auxiliary electrode and Ag/AgCl reference electrode.

4. Thermal analysis

Fig. S93 DSC Thermogram of O1 recorded at a rate of 10 °C/min

Fig. S94 DSC Thermogram of O2 recorded at a rate of 10 °C/min

Fig. S95 DSC Thermogram of O3 recorded at a rate of 10 °C/min

Fig. S96 DSC Thermogram of OM1 recorded at a rate of 10 °C/min

Fig. S97 DSC Thermogram of OM2 recorded at a rate of 10 °C/min

Fig. S98 DSC Thermogram of OM3 recorded at a rate of 10 °C/min

Fig. S99 TGA Thermogram of O1 recorded at a rate of 5 $^{\circ}$ C/min under N₂

Fig. S100 TGA Thermogram of O2 recorded at a rate of 5 °C/min under N₂

Fig. S101 TGA Thermogram of O3 recorded at a rate of 5 $^{\circ}$ C/min under N₂

Fig. S102 TGA Thermogram of OH1 recorded at a rate of 5 $^{\circ}$ C/min under N₂

Fig. S103 TGA Thermogram of OH2 recorded at a rate of 5 °C/min under N2

Fig. S104 TGA Thermogram of OH3 recorded at a rate of 5 °C/min under N2

Fig. S105 TGA Thermogram of OM1 recorded at a rate of 5 °C/min under N₂

Fig. S106 TGA Thermogram of OM2 recorded at a rate of 5 $^{\circ}$ C/min under N₂

Fig. S107 TGA Thermogram of OM3 recorded at a rate of 5 °C/min under N₂

5. Crystallographic data

X-ray data collections and refinement. The orange needle-like single crystals of O3 suitable for X-ray crystallography, were obtained by layering MeOH on DCM solution of O3. Single-crystal X-ray structural study was performed on a Bruker-APEX-II CCD X-ray diffractometer equipped with an Oxford Instruments low-temperature attachment. Data were collected at 100(2) K using graphite-monochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The frames were indexed, integrated, and scaled using the SMART and SAINT software package,² and the data were corrected for absorption using the SADABS program.³ Pertinent crystallographic data for O3 is summarized in Table S5. The title compound crystallizes in the triclinic space group, P-1. Two independent molecules of O3 were located in the asymmetric unit with negligible differences in their metrical parameters. CCDC 1512387 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The structure was solved and refined using the SHELX suite of programs.⁴ The molecular structure was generated by using ORTEP-3 for Windows Version 2.02.⁵ The hydrogen atoms were included in geometrically calculated positions in the final stages of the refinement and were refined according to the typical riding model. All non-hydrogen atoms were refined with anisotropic thermal parameters.

	03
Empirical formula	$C_{78}H_{100}N_2SSi_2$
Formula weight	1153.83
Crystal system	Triclinic
Space group	P-1
a, Å	15.523(9)
b, Å	17.690(11)
c, Å	28.487(17)
α, deg	99.08(2)
β, deg	102.73(2)
γ, deg	103.53(2)
V, Å ³	7235(8)
Z	4
ρ_{calcd} , g cm ⁻³	1.059
μ , mm ⁻¹	1.19
F(000)	2504
Reflections	
Collected	85829
independent	25388
observed $[I > 2\sigma(I)]$	5020
No. of variables	1732
Goodness-of-fit	0.986
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.1749$
	$wR_2 = 0.3995$
R indices (all data) ^a	$R_1 = 0.4700$
	$wR_2 = 0.5827$

Table S8. Crystallographic data and refinement parameters for O3.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ with } F_{o}{}^{2} > 2\sigma(F_{o}{}^{2}). \text{ } wR_{2} = [\Sigma w(|F_{o}{}^{2}| - |F_{c}{}^{2}|)^{2} / \Sigma |F_{o}{}^{2}|^{2}]$

Fig. S108 (a) ORTEP representation of **O3** with atoms labelled. For the sake of clarity, the carbon atoms of octyl groups are not labelled, and the hydrogen atoms have been omitted. The thermal ellipsoids are drawn at 30% of probability. (b) Side view as a stick model. Hydrogen atoms have been omitted for the sake of clarity.

6. Reference

- 1. A. Chakraborty, D. Chakrabarty, P. Hazra, D. Seth and N. Sarkar, *Chem. Phys. Lett.*, 2003, **382**,508.
- 2. SAINT+ Software for CCD Diffractometers, Bruker AXS, Madison, WI, 2000.
- 3. G. M. Sheldrick, SADABS Program for Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1999.
- 4. (a) G. M. Sheldrick, *Acta Cryst.* 2015, **A71**, 3. (b) G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.
- 5. L. J. Farrugia, ORTEP-3 for windows-A version of ORTEP-III with a graphical user interface (GUI) *J. Appl. Cryst.*, 1997, **30**, 565.