SUPPORTING INFORMATION

Heteroleptic Iron(III) Schiff Base Spin Crossover Complexes; Halogen Substitution, Solvent Loss and Crystallite Size Effects

Wasinee Phonsri,^a David S. Macedo,^a Casey G. Davies,^b Guy N. L. Jameson,^b Boujemaa Moubaraki,^a and Keith S. Murray^{*a}

 ^a School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
^b Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, Dunedin, 9054, New Zealand Figure S 1 The asymmetric unit of a) 3.0.5MeCN, b) 2 and c) 4

Figure S 2 The crystal packing of **2·MeCN** and **3·0.5MeCN** at 100 K in 1D chain, double chains along the *c* axis through π - π interactions regarding to thsa. This gives rise to a free hole for MeCN solvents to occupy.

Figure S 3 The packing comparison between **2·MeCN** and **3·0.5MeCN** in 2D via P4AE (Parallel Four Fold Aryl Embrace) interactions¹ showing they are isostructural. The model represents compound **2·MeCN**

Figure S 4 The crystal packing of compound **1·2.5MeCN** at 100 K and related simple models describing interactions that connect the Fe(III) molecules in *pseudo*-three dimensional structure.

Figure S 5 The crystal packing of compound **4**•**MeCN** at 100 K and related simple models describing interactions that connect the Fe(III) molecules in *pseudo*-three dimensional structure.

Figure S 6 The χ_M T versus T plots for a) **1** slow cooling, powder form; cooling from 270 K black circles; heating back up to 350 K, red triangles; b) heated sample and c) dry in air for 10 days of **2·MeCN**

Figure S 7 PXRD patterns of the compounds in comparison with the simulated PXRD from single crystal data for compound **2·MeCN** in various conditions.

Figure S 8 TGA data for compound a) **1·2.5MeCN**, b) **2·MeCN**, c) **3·MeCN** with 5 Kmin⁻¹ rate and d) **4·MeCN** with various heating rate as shown.

Figure S 9 FT-IR spectra of the compounds showing similar pattern between solvate and de-solvate compounds. Free MeCN is observed at 2250 cm⁻¹ for fresh compound **1-2.5MeCN**.

Table S 1 Intermolecular interactions in compound 2·MeCN, 2, 3·MeCN and 3·0.5MeCN

Table S 2 Intermolecular interactions in compound 1·MeCN at various temperatures

Table S 3 Intermolecular interactions in compound 4-MeCN and 4 at 100 K

Table S 4 Related halogen interactions in each compounds

Table S 5 Mössbauer spectroscopic data of 1.2.5MeCN.

c Figure S 1 The asymmetric unit of a) 3.0.5MeCN, b) 2 and c) 4

100 K	2∙MeCN	2	3·MeCN	3·0.5MeCN		
in 1D along the c axis						
π-π	3.716	3.732	3.757	3.764		
π-π	3.037	3.022	3.049	3.066		
C33-H33…O2	2.363(2)	2.363(2)	2.380(5)	2.402(4)		
N5-H5A…N8	2.035(3)	2.012(3)	2.026(6)	2.018(6)		
N10-H10A…N4	2.462(2)	2.333(3)	2.480(6)	2.437(5)		
diagonal on b plar	ie					
C20-H20…O1	2.694(2)	2.866(2)	2.720(5)	2.740(4)		
π-π	3.611	3.790	3.630	3.684		
C5-H5…S1	2.949(1)	3.068(1)	2.975(2)	3.026(2)		
C7-H7…S1	2.639(1)	2.680(1)	2.652(2)	2.665(2)		
C9-H9…S1	2.989(1)	3.044(1)	2.983(2)	3.018(2)		
N5-H5B…O3	2.198(2)	2.269(2)	2.205(5)	2.234(4)		
along the a axis						
C11-H11…X2	2.930(1)	2.998(1)	2.957(1)	2.987(1)		
C43-H43…X1	2.889(1)	2.802(1)	2.969(1)	2.930(1)		
P4AE Fe1-Fe1						
C13-H13…π	3.070	3.086	3.116	3.081		
π-π	3.154	3.167	3.122	3.160		
P4AE Fe2-Fe2						
С37-Н37…π	3.275	3.273	3.259	3.235		
π-π	3.368	3.339	3.333	3.323		
interaction to solvent						
N10-H10B…N11	2.636(4)	-	2.615(10)	2.627(14)		
C18-H18…N11	2.551(3)	-	2.580(9)	2.572(11)		
C50-H50A…S2	2.971(1)	-	3.017(2)	2.986(2)		
C50-H50A…π	2.741	-	2.804	2.704		
C50-H50B…N12	2.688(7)	-	2.712(20)	-		
C39-H39…N12	2.685(6)	-	2.693(17)	-		

Table S 1 Intermolecular interactions in compound 2·MeCN, 2, 3·MeCN and 3·0.5MeCN

[Fe(qsal-Br)(thsa)]·0.5MeCN, 3·0.5MeCN at 100 K

Figure S 2 The crystal packing of **2·MeCN** and **3·0.5MeCN** at 100 K in 1D chain, double chains along the *c* axis through π - π interactions regarding to thsa. This gives rise to a free hole for MeCN solvents to occupy.

Figure S 3 The packing comparison between **2·MeCN** and **3·0.5MeCN** in 2D via P4AE (Parallel Four Fold Aryl Embrace) interactions¹ showing they are isostructural. The model represents compound **2·MeCN**.

Figure S 4 The crystal packing of compound **1·2.5MeCN** at 100 K and related simple models describing interactions that connect the Fe(III) molecules in *pseudo*-three dimensional structure.

	270 K	160 K	295 K	320 K	100 K		
In 1D chain along diagonal on <i>bc</i> plane							
π-π	3.513	3.512	3.516	3.519	3.498		
C33-H33…O2	2.525(1)	2.489(1)	2.526(1)	2.538(1)	2.507(1)		
C9-H9…O4	2.754(1)	2.698(1)	2.767(1)	2.779(1)	2.693(1)		
N5-H5A…N8	2.126(1)	2.075(1)	2.132(1)	2.133(1)	2.070(1)		
N10-H10A…N4	2.249(1)	2.228(1)	2.253(1)	2.266(1)	2.225(1)		
C42-H42…O1	2.647(1)	2.596(1)	2.670(1)	2.701(1)	2.610(1)		
π-π	3.345	3.294	3.359	3.369	3.251		
π-π	3.648	3.640	3.645	3.643	3.631		
C5-H5…S1	2.970(1)	2.928(2)	2.971(1)	2.983(1)	2.914(1)		
C7-H7…S1	2.809(1)	2.762(2)	2.814(1)	2.820(1)	2.748(1)		
N5-H5B…O3	2.246(1)	2.219(1)	2.248(1)	2.244(1)	2.187(1)		
Diagonal on <i>a</i> axis							
C4-F1…H3	2.535(1)	2.548(1)	2.537(1)	2.541(1)	2.553(1)		
Diagonal on <i>bc</i> plane							
π-π	3.539	3.503	3.542	3.551	3.534		

Table S 2 Intermolecular interactions in compound 1.2.5MeCN at various temperatures

Figure S 5 The crystal packing of compound **4**•**MeCN** at 100 K and related simple models describing interactions that connect the Fe(III) molecules in *pseudo*-three dimensional structure.

	4·MeCN	4
In 1D along the a axis		
π-π	3.364	3.372
C3-H3…S1	2.834(4)	2.890(1)
C14-H14…π	2.606	2.571
In 1D along the c axis		
N5-H5A…O2	2.274(8)	2.269(1)
N5-H5A…N1	2.727(9)	(2.959(1))
C18-H18…N5	(2.836(12))	2.629(1)
C11-H11…N4	2.554(11)	2.668(1)
along the b axis		
π-π	3.673	3.624
C4-I1···π	3.637	3.628
MeCN interactions		
N5-H5B…N6	2.159(20)	-
C26-H26C…S1	2.976(4)	-

Table S 3 Intermolecular interactions in compound 4-MeCN and 4 at 100 K

Comp	X = F, 1·2.5MeCN	X = CI,	X = Br,	X = I, 4·MeCN
		2∙MeCN	3·MeCN	
interactions	C-F…H	C-Cl…H	C-Br…H	C-Ι…π
				the appoint
Model				

Table S 4 Related halogen interactions in each compounds

Cycle	<i>Т_{1/2}</i> ↑/К	$T_{1/2} \downarrow / K$
1	349	320
2	345	320

% SCO -	$\chi MTmax - \chi MTmin$
/0500 -	$\overline{4.375 - 0.375}$ (ideal χ MT value for HS and LS, respectively)

% SCO for heated powder of $2 = \frac{3.86 - 1.5}{4} = 59\%$ % SCO for heated crystal of $2 = \frac{2.75 - 1.5}{4} = 31\%$ b

Figure S 6 The χ_M T versus T plots for a) **1·2.5MeCN** slow cooling, powder form; cooling from 270 K black circles; heating back up to 350 K, red triangles; b) heated sample and c) dry in air for 10 days of **2·nMeCN** (n<0.1)

Figure S 7 PXRD patterns of the compounds in comparison with the simulated PXRD from single crystal data for compound **2·MeCN** in various conditions. (Note label **2** in the picture is compound **2·MeCN**)

Т (К)	Species	δ (mm/s)	∆E _Q (mm/s)	Γ _{L(R)} (mm/s)	I (%)	
5.5	LS	0.23	2.81	0.33(0.27)	62	
	HS	0.52	0.90	0.90ª(0.57)	38	
160	LS	0.20	2.80	0.27(0.25)	54	
	HS	0.48	0.91	0.68(0.54)	46	
295						
(0-2.5 days)	LS	0.14	2.69	0.33(0.28)	49	
	HS	0.41	0.84	0.63(0.63)	51	
295 ^b						
(2.5-5.5 days)	LS	0.15	2.68	0.35(0.32)	31	
	HS	0.41	0.83	0.50(0.49)	69	
Desolvated (1) (heated for 120 min at 330 K)						
5.4	LS	0.24	2.74	0.37(0.28)	33	
	HS	0.54	0.89	0.45	67	

Table S 5 Mössbauer spectroscopic data of 1.2.5MeCN.

295	LS	-	-	-	-
	HS	0.42	0.84	0.38(0.39)	100

^a very broad

^b 2.5-5.5 day spectrum is made by subtracting the 2.5 day spectrum from the 5.5 day spectrum.

Figure S 8 TGA data for compound a) **1·2.5MeCN**, b) **2·MeCN**, c) **3·MeCN** with 5 Kmin⁻¹ rate and d) **4·MeCN** with various heating rate as shown.

Figure S 9 FT-IR spectra of the compounds showing similar pattern between solvate and de-solvate compounds. Free MeCN is observed at 2250 cm⁻¹ for fresh compound **1-2.5MeCN**.

References

1. V. Russell, M. Scudder and I. Dance, J. Chem. Soc., Dalton Trans., 2001, 789-799.