Supporting Information

Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H_2 production activity

Ya Zheng, Jinming Wang, Jing Zhang, Tianyou Peng and Renjie Li*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

Table of content

Figure S1. MALDI-TOF mass spectrum of $\text{H}_2\text{Py}-1$.

Figure S2. MALDI-TOF mass spectrum of $\text{H}_2\text{Py}-2$.

Figure S3. MALDI-TOF mass spectrum of $\text{H}_2\text{Py}-3$.

Figure S4. MALDI-TOF mass spectrum of $\text{H}_2\text{Py}-4$.

Figure S5. ^1H MNR (in DMSO-d_6) spectrum of the molecular ion of $\text{H}_2\text{Py}-1$.

Figure S6. ^1H MNR (in DMSO-d_6) spectrum of the molecular ion of $\text{H}_2\text{Py}-2$.

Figure S7. ^1H MNR (in DMSO-d_6) spectrum of the molecular ion of $\text{H}_2\text{Py}-3$.

Figure S8. ^1H MNR (in DMSO-d_6) spectrum of the molecular ion of $\text{H}_2\text{Py}-4$.

Figure S9. Comparison of the FTIR spectra of g-C_3N_4 and its ZnPysensitized products.

Figure S10. The typical cyclic voltammogram of ZnPys in DMF containing 0.1 M [NBu$_4$][ClO$_4$] at a scan rate of 100 mV·S$^{-1}$.

Figure S11. UV-vis absorption and fluorescence emission spectra of ZnPys in DMF solution with excitation fixed at 426 nm.

Figure S12. Photoluminescence spectra (excited at 426 nm) of ZnPys and g-C_3N_4/ZnPys dispersion (0.67 g L$^{-1}$ and 1.34 g L$^{-1}$), DMF was used as the solvent.

Figure S13. The UV-vis absorption spectra of ZnPys-Pt/g-C_3N_4 before and after light irradiation.
Figure S1. MALDI-TOF mass spectrum of H$_2$Py-1.

Figure S2. MALDI-TOF mass spectrum of H$_2$Py-2.
Figure S3. MALDI-TOF mass spectrum of H$_2$Py-3.

Figure S4. MALDI-TOF mass spectrum of H$_2$Py-4.
Figure S5. 1H MNR (in DMSO-d$_6$) spectrum of the molecular ion of H$_2$Py-1.

Figure S6. 1H MNR (in DMSO-d$_6$) spectrum of the molecular ion of H$_2$Py-2.
Figure S7. 1H MNR (in DMSO-d_6) spectrum of the molecular ion of H$_2$Py-3.

Figure S8. 1H MNR (in DMSO-d_6) spectrum of the molecular ion of H$_2$Py-4.
Figure S9. Comparison of the FTIR spectra of g-C₃N₄ and its ZnPy-sensitized products.

Figure S10. The typical cyclic voltammogram of ZnPys in DMF containing 0.1 M [NBu₄][ClO₄] at a scan rate of 100 mV·S⁻¹.
Figure S11. UV-vis absorption and fluorescence emission spectra of ZnPys in DMF solution with excitation fixed at 426 nm.

Figure S12. Photoluminescence spectra (excited at 426 nm) of ZnPys and g-C₃N₄/ZnPys dispersion (0.67 g L⁻¹ and 1.34 g L⁻¹), DMF was used as the solvent.
Figure S13. The UV-vis absorption spectra of ZnPys-Pt/g-C$_3$N$_4$ before and after the photocatalytic experiments.