Supporting Information for

A Chiral Salen-based MOF Catalytic Material with highly thermal, aqueous and chemical stabilities

Jiawei Li, Yanwei Ren,* Chaorong Qi and Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology,
Guangzhou 510640, P. R. China

Content
1. Figure S1. IR spectrum of L ... 2
2. Figure S2. IR spectrum of 1 ... 2
3. Figure S3. UV-vis spectrum of L .. 3
4. Figure S4. 1H NMR of L ... 3
5. Figure S5. 13C NMR of L ... 4
6. Figure S6. HR-MS of L ... 4
7. Figure S7. 1H NMR of NiL and 1 ... 5
8. Figure S8. Asymmetric unit of 1 .. 6
9. Figure S9. Space-filling model of the 8-fold interpenetrated framework along a axis .. 6
10. Figure S10. TG curve of 1 .. 7
11. Figure S11. NMR data of β-hydroxy-1,2,3-triazoles ... 11
12. Figure S12. GC-MS analyses of the cyclic carbonates .. 15
13. Figure S13. Proposed mechanism for the cycloaddition of CO$_2$ with epoxides catalyzed by 1 16
14. Table S1. BET plot data for 1 .. 17
Figure S1. IR spectrum of L

Figure S2. IR spectrum of 1
Figure S3. UV-vis spectrum of L.

Figure S4. 1H NMR of L.
Figure S5. 13C NMR of L

Figure S6. HR-MS of L
Figure S7. (a) 1H NMR of NiL in d-DMSO; (b) 1H NMR of NiL in d-DCl and d-DMSO (V/V, 1:1); (c) 1H NMR of I after dissolved in d-DCl and d-DMSO (V/V, 1:1).
Figure S8. Asymmetric unit of 1

Figure S9. Space-filling model of the 8-fold interpenetrated framework along a axis
Figure S10. TG curve of 1

^{1}H NMR
Figure S11. NMR spectra of β-hydroxy-1,2,3-triazoles
Figure S12. GC-MS analyses of the cyclic carbonates
Figure S13. Proposed mechanism for the cycloaddition of CO$_2$ with epoxides catalyzed by 1
Table S1. BET plot data for 1

BET Surface Area: 527.7582 ± 3.3610 m²/g

Slope: 0.008244 ± 0.000052 g/cm³ STP

Y-Intercept: 0.000003 ±0.000003 g/cm³ STP

C: 2873.98242

Qm: 121.252 cm³/g STP

Correlation Coefficient: 0.9999595

Molecular Cross-Sectional Area: 0.1620 nm²

<table>
<thead>
<tr>
<th>Relative Pressure (P/P₀)</th>
<th>Quantity Adsorbed (cm³/g STP)</th>
<th>1/[Q(P₀/P - 1)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020221646</td>
<td>120.6043</td>
<td>0.000171</td>
</tr>
<tr>
<td>0.030745699</td>
<td>123.9053</td>
<td>0.000256</td>
</tr>
<tr>
<td>0.055884706</td>
<td>128.4697</td>
<td>0.000461</td>
</tr>
<tr>
<td>0.084060946</td>
<td>131.5677</td>
<td>0.000698</td>
</tr>
</tbody>
</table>