Supporting Information

Highly efficient visible-light-driven photocatalytic degradation of Tetracycline by a Z-Scheme g-C$_3$N$_4$/Bi$_3$TaO$_7$ nanocomposite photocatalyst

Bifu Luo, Min Chen, Zhengyuan Zhang, Jie Xu, Di Li, Dongbo Xu, Weidong Shi*

a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China. E-mail: swd1978@ujs.edu.cn.
b School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, P. R. China.
c Institute for Energy research, Jiangsu University, Zhenjiang 212013, P. R. China.
d School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.

Result and discussion

Figure S1 showed the typical FT-IR spectra of g-C$_3$N$_4$/Bi$_3$TaO$_7$ composites. As can be seen, the peaks at 1250 cm$^{-1}$, 1324 cm$^{-1}$, 1420 cm$^{-1}$, 1573 cm$^{-1}$, and 1637 cm$^{-1}$ could be contributed to the typical stretching modes of CN heterocycles, while the peak at 810 cm$^{-1}$ could be contributed to the characteristic breathing mode of triazine units in g-C$_3$N$_4$. For bare Bi$_3$TaO$_7$, the bands at about 1630 cm$^{-1}$ can be assigned to water molecules adsorbed on the surface of the catalysts. The peaks located at 500-1000 cm$^{-1}$ are mainly derived from the Bi-O, Ta-O-Ta stretching vibrations, especially, and the characteristic adsorption peak at 661 cm$^{-1}$ is attributed to stretching vibrations of Ta-O.$^{3-5}$
Figure S1 FTIR spectra of the pure g-C$_3$N$_4$, BTO, and g-C$_3$N$_4$/Bi$_3$TaO$_7$ composites with different mass ratio.

The EDS patterns for the pure Bi$_3$TaO$_7$, g-C$_3$N$_4$ and CB-5 composite were detected, as shown in Fig S2. According to the Fig. S2a and S2b, the product consists of O, Ta and Bi element for Bi$_3$TaO$_7$, C and N element for g-C$_3$N$_4$. In addition, it can be seen that C, N, O, Ta and Bi element were existed in the CB-5, no other impurity element signals were detected, suggesting that the as-prepared g-C$_3$N$_4$/Bi$_3$TaO$_7$ composite is free of impurity (Fig. S2c).
Fig. S2 EDS spectra of (a) pristine Bi$_3$TaO$_7$; (b) g-C$_3$N$_4$ and (c) CB-5 composite.

Photoluminescence spectra of g-C$_3$N$_4$ and CB-5 composite was shown in the Figure S3. As illustrated in Figure S3a, a strong emission peak was observed at 396 nm for pure Bi$_3$TaO$_7$ and 459 nm for g-C$_3$N$_4$. And other composites exhibited two major peaks. Fig S3b showed the PL spectrum for different composite species. The order of peak intensity of various composites can be listed as follows: CB-9 > CB-1 > CB-7 > CB-3 > CB-5. The PL emission intensity of CB-5 composite got an obvious decrease compared with bare g-C$_3$N$_4$, Bi$_3$TaO$_7$ and other composites, which suggested that the charge recombination can be efficiently prevented, resulting in the improvement of photocatalytic performance.

6
The stability of photocatalyst is an important factor for its application. Therefore, the recycle experiments of Bi$_3$TaO$_7$ and 50 wt% g-C$_3$N$_4$/Bi$_3$TaO$_7$ photocatalysts were conducted, as shown in Figure S3. For Bi$_3$TaO$_7$, after five cycles for the degradation of TC, the catalyst does not exhibit any significant loss of activity, which means that the catalyst is stable during the photocatalytic oxidation of the pollutant molecules. In addition, the degradation rate of TC over g-C$_3$N$_4$/Bi$_3$TaO$_7$ shows a slight decline after five cycles, where the photocatalytic efficiency reduces only 4.1%, revealing that g-C$_3$N$_4$/Bi$_3$TaO$_7$ composite photocatalyst is stable during the photocatalytic process. Therefore, the g-C$_3$N$_4$/Bi$_3$TaO$_7$ composite photocatalyst can be employed as an efficient visible-light photocatalyst that can be recycled for their application.
References

1 J. Xu, G. Wang, J. Fan, B. Liu, S. Cao and J. Yu, *J. Power Sources*, 2015, **274**, 77-84