Supporting Information

Synthesis of Zwitterionic Palladium Complexes and Their Application as Catalysts in Cross-Coupling Reactions of Aryl, Heteroaryl and Benzyl Bromides with Organoboron Reagents in Neat Water

V. Ramakrishna and N. Dastagiri Reddy*

Department of Chemistry, Pondicherry University, Pondicherry 605014, India

*Author. E–mail: ndreddy.che@pondiuni.edu.in

Table of contents

1. General considerations ..2

2. Experimental procedures ...2

3. Analytical data ..11

4. Molecular structures of [HL2Cl](PF6) and [L4Cl]Cl and their selected bond parameters……25

5. Suzuki-Miyaura coupling reaction of 4-bromoacetophenone at different catalyst loadings.....26

6. Investigations into the nature of the catalysis (homogeneous vs heterogeneous)………….....26

7. Crystal data for compounds [HL2Cl](PF6), [L4Cl]Cl, I, II, III and V…………………………...28

8. 1H, 13C and 31P NMR spectra and ES-MS..34
General considerations. All manipulations, except syntheses of Pd(II) complexes, were carried out under open atmosphere. *N*-Substituted imidazoles were prepared by following literature procedures. All commercially available chemicals including aryl bromides and arylboronic acids were used as received (Sigma-Aldrich, Avra and Alfa Aesar). THF, toluene (from Na/benzophenone ketyl) acetonitrile and chloroform (from CaH₂) were distilled fresh as and when required. Thin-layer chromatography was performed using pre-coated silica gel 60 F₂₅₄ plates and UV light at 254 nm. ¹H, ¹³C and ³¹P spectra were recorded on a Bruker 400 MHz instrument. HR-MS were recorded on Agilent 6540 UHD Q-TOF mass spectrometer. Elemental analyses were performed using a Thermo Scientific Flash 2000 CHNS analyser.

Experimental procedures

General procedure for the synthesis of *N*-(3-chloro-2-quinoxalinyl)-*N'*-aryl substituted imidazolium salts. 2,3-Dichloroquinoxaline (1 equiv) and excess of *N*-aryl substituted imidazole (1.5 equiv) were taken in a pressure tube, closed tight and heated at 140 °C for 90 min. The mixture was allowed to cool to ambient temperature, diethyl ether was added and ultrasonicated for 30 min. The suspension was filtered, the solid residue was washed with diethyl ether and dried under high vacuum.

N-(3-Chloro-2-quinoxalinyl)-*N'*-(2,6-diisopropylphenyl)imidazolium chloride, [HL₁Cl]Cl.

2,3-Dichloroquinoxaline (0.995 g, 5.0 mmol), 1-(2,6-diisopropylphenyl)-1H-imidazole (1.712 g, 7.5 mmol). R¹ = 2,6-Diisopropylphenyl, [HL₁Cl]Cl

White solid. Yield: 92% (1.950 g). mp: 264 – 268 °C. ¹H NMR (400 MHz, DMSO-*d₆*): δ 10.80 (s, 1H, imidazole-NC₃H₃N), 8.81 (d, 1H, imidazole-NC₃H₃CHN), 8.64 (d, 1H, imidazole-NCH₃CHN), 8.19 (m, 4H, quino-H), 7.67 (m, 3H, Ph-H), 2.49 [m, 2H, CH(CH₃)₂], 1.29 [d, 12H, CH(CH₃)₂]
ppm. 13C NMR (100 MHz, DMSO-d_6): δ 144.84, 141.54, 139.92, 139.83, 138.47, 133.53, 132.53, 131.76, 130.29, 128.85, 128.02, 125.42, 124.53, 124.28, 28.34, 23.76, 23.64 ppm. HRMS (ESI): m/z calcd for C$_{23}$H$_{24}$ClN$_4$ [M – Cl]$^+$ 391.1689, found 391.1682.

N-(3-Chloro-2-quinoxalinyl)$-N'$-(2,4,6-trimethylphenyl)imidazolium chloride, [HL2Cl]Cl.

2,3-Dichloroquinoxaline (0.850 g, 4.3 mmol), 1-mesityl-1H-imidazole (1.192 g, 6.3 mmol). Brown solid. Yield: 93% (1.521 g). mp: 227 – 231 °C. 1H NMR (400 MHz, DMSO-d_6): δ 10.60 (s, 1H, imidazole-$\text{NC}_\text{H}_\text{N}$), 8.70 (d, 1H, imidazole-$\text{NC}_\text{H}_\text{CHN}$), 8.41 (d, 1H, imidazole-NCHCHN), 8.31 (m, 2H, quino-H), 8.14 (m, 2H, quino-H), 7.22 (s, 2H, Ph-H), 2.36 (s, 3H, p-CH_3), 2.16 (s, 6H, o-CH_3) ppm. 13C NMR (100 MHz, DMSO-d_6): δ 141.64, 141.57, 140.62, 139.85, 139.61, 138.48, 134.16, 133.52, 132.53, 130.90, 129.36, 128.84, 128.03, 124.35, 124.15, 20.62, 17.06 ppm. HRMS (ESI): m/z calcd for C$_{20}$H$_{18}$ClN$_4$ [M – Cl]$^+$ 349.1219, found 349.1214.

N-(3-Chloro-2-quinoxalinyl)$-N'$-(2,6-diisopropylphenyl)imidazolium hexafluorophosphate, [HL1Cl]PF$_6$.

To a solution of N-(3-chloro-2-quinoxalinyl)$-N'$-(2,6-diisopropylphenyl)imidazolium chloride (0.854 g, 2 mmol) in water (10 mL) was added a filtered saturated aqueous solution of KPF$_6$ (0.460 g, 2.5 mmol). The pale yellow precipitate, which formed immediately was collected by filtration, washed with water and diethyl ether, and dried under vacuum. Yield: 90% (0.962 g). mp: 251 – 253 °C. 1H NMR (400 MHz, DMSO-d_6): δ 10.40 (s, 1H, imidazole-$\text{NC}_\text{H}_\text{N}$), 8.70 (s, 1H, imidazole-NCHCHN), 8.53 (s, 1H, imidazole-NCHCHN), 8.37 – 8.32 (m, 2H, quino-H), 8.21 – 8.14 (m, 2H, quino-H), 7.77 – 7.73 (m, 2H, Ph-H), 7.59 (m, 2H, Ph-H), 2.42 [m, 2H, CH(CH$_3$)$_2$], 1.20 [dd, 12H, CH(CH$_3$)$_2$] ppm. 13C NMR (100 MHz, DMSO-d_6): δ 144.99, 141.65, 141.27,
139.88, 139.71, 138.61, 133.39, 132.75, 131.95, 130.4, 128.95, 128.13, 125.54, 124.68, 124.27, 28.47, 23.80 ppm. HRMS (ESI): m/z calcd for C_{23}H_{24}ClN_{4} [M – PF_{6}]^{+} 391.1689, found 391.1681.

\[N-(3\text{-Chloro-}2\text{-quinoxalinyl})-N’-(2,4,6\text{-trimethylphenyl})\text{imidazolium hexafluorophosphate, [HL2Cl]}\text{PF}_{6}. \]

The same procedure as mentioned for the synthesis of \(N\text{-}(3\text{-chloro-}2\text{-quinoxalinyl})-N’-(2,6\text{-diisopropylphenyl})\text{imidazolium hexafluorophosphate} \) was followed. \(N\text{-}(3\text{-Chloro-}2\text{-quinoxalinyl})-N’-(2,4,6\text{-trimethylphenyl})\text{imidazolium chloride (0.770 mg, 2.0 mmol), KPF}_{6} (0.644 mg, 3.5 mmol), in water (10 mL). The brown precipitate was collected by filtration. Yield: 91% (0.902 g). mp: 242 – 244 °C. \(^1\text{H NMR (400 MHz, DMSO-}d_{6}\text{): }\delta 10.17 \text{ (s, 1H, imidazole-NCHN), 8.58 (s, 1H, imidazole-NCHCHN), 8.25 (m, 3H, quino-H), 8.14 (m, 2H, quino-H), 7.19 (s, 2H, Ph-H), 2.41 (s, 3H, }p\text{-CH}_{3}\text{), 2.18 (s, 6H, }o\text{-CH}_{3}\text{) ppm.} \]

\(^{13}\text{C NMR (100 MHz, DMSO-}d_{6}\text{): }\delta 141.62, 141.04, 140.66, 139.53, 139.13, 138.50, 134.06, 133.34, 132.37, 130.81, 129.33, 128.70, 127.91, 124.26, 124.04, 20.65, 17.03 ppm. HRMS (ESI): m/z calcd for C_{20}H_{18}ClN_{4} [M – PF_{6}]^{+} 349.1219, found 349.1211. \)

2-Chloro-3-(2-methyl-1H-imidazol-1-yl)quinoxaline.

2-Methylimidazole (0.412 g, 5.02 mmol), potassium hydroxide (0.338 g, 6.03 mmol), tetrabutylammonium bromide (0.023 g, 0.07 mmol) and 2,3-dichloroquinoxaline (1.000 g, 5.02 mmol) were placed in a round-bottomed flask and suspended in 20 mL of THF. The mixture was stirred at 70 °C for 2 h. The resulting mixture was allowed to cool to room temperature, and the solvent was removed under vacuum. Water was added to the residue and extracted three times with 100 mL of dichloromethane. After washing with water, the combined organic phases were dried over anhydrous MgSO_{4}, filtered, and volatiles
were removed under reduced pressure. The crude solid was purified by column chromatography (silica gel, hexane/ethyl acetate: 12/88) to afford white solid. Yield: 52% (0.632 g). mp: 149 - 153 °C. \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.11\) (m, 2H, quino-H), 7.89 (m, 2H, quino-H), 7.24 (d, 1H, imidazole-NCHCN), 7.10 (d, 1H, imidazole-NCHCHN), 2.41 (s, 3H, imidazole-CH\(_3\)) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 146.05, 143.45, 142.85, 141.81, 139.96, 132.26, 132.13, 131.66, 129.46, 129.13, 128.98, 128.41, 120.05, 14.08\) ppm. HRMS (ESI): \(m/z\) calcd for C\(_{12}\)H\(_{10}\)ClN\(_4\) [M + H]\(^{+}\) 245.0594, found 245.0586.

N-(3-Chloro-2-quinoxalinyl)-2-methyl-N'-benzylimidazolium chloride, [L3Cl]Cl.

Excess of benzyl chloride (0.909 g, 7.1 mmol) was added to 2-chloro-3-(2-methyl-1H-imidazol-1-yl)quinoxaline (0.244 g, 1 mmol) in a 13 mm X 90 mm test tube and the mixture was stirred for 1 h at 120 °C. A white precipitate started to form during the course of the reaction. After cooling to ambient temperature, the solid was collected by filtration and washed thoroughly with diethyl ether and dried under vacuum. Yield: 62% (0.231 g). mp: 237 - 240 °C. \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.65\) (d, 1H, imidazole-NCHCN), \(8.19\) (m, 2H, quino-H), \(8.02\) (m, 2H, quino-H), \(7.73\) (d, 1H, imidazole-NCHCHN), \(7.54\) (m, 2H, Ph-H), \(7.41\) (m, 2H, Ph-H), \(6.12\) (s, 2H, benzyl-CH\(_2\)), \(2.85\) (s, 3H, imidazole-CH\(_3\)) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 146.16, 142.88, 141.80, 139.47, 138.82, 134.11, 133.06, 132.74, 129.46, 129.34, 128.92, 128.57, 124.23, 122.13, 122.07, 53.15, 12.05\) ppm. HRMS (ESI): \(m/z\) calcd for C\(_{19}\)H\(_{16}\)ClN\(_4\) [M – Cl]\(^{+}\) 335.1063, found 335.1056.

1-(3-Chloro-2-quinoxalinyl)-4-(dimethylamino)pyridinium chloride, [L4Cl]Cl.

A mixture of 2,3-dichloroquinoxaline (0.398 g, 2 mmol) and \(N,N\)-dimethyl-4-aminopyridine (0.366 g, 3 mmol) in 5 mL of toluene...
was refluxed for 2 h to afford a light yellow solid, which was collected by filtration, washed with diethyl ether and dried under vacuum. Yield: 85% (0.542 g). mp: 278 – 282 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.70 (d, 2H, Py-H), 8.26 – 8.23 (m, 2H, quino-H), 8.13 – 8.05 (m, 2H, quino-H), 7.37 (d, 2H, Py-H), 3.36 [s, 6H, N(CH₃)₂] ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 156.70, 144.63, 142.10, 141.53, 141.12, 138.80, 133.12, 132.25, 128.81, 127.92, 107.50, 40.45 ppm. HRMS (ESI): m/z calcd for C₁₅H₁₄ClN₄ [M – Cl]⁺ 285.0907, found 285.0898.

General procedure for the synthesis of anionic zwitterionic palladium(II) complexes. A Schlenk flask was charged with imidazolium salt (1 equiv) and Pd(PPh₃)₄ (1.2 equiv) (Path-1) or Pd₂(dba)₃ (0.6 equiv) and PPh₃ (1.2 equiv) (Path-2), in 20 mL of THF. The mixture was stirred under N₂ atmosphere for 6 h at 50 °C. A yellow precipitate started to form during the course of reaction. After cooling to room temperature, the solid was collected by filtration, washed thoroughly with 10 mL of chloroform/toluene (1:1) mixture and dried under vacuum. Recrystallization from acetonitrile gave pale yellow crystals at 0 °C.

[Pd(HL1)(PPh₃)Cl₂] (I)

Path-1: [HL1Cl]Cl (0.213 g, 0.5 mmol), Pd(PPh₃)₄ (0.693 g, 0.6 mmol). Yield: 92% (0.365 g). **Path-2:** [HL1Cl]Cl (0.185 g, 0.43 mmol), Pd₂(dba)₃ (0.237 g, 0.26 mmol) and PPh₃ (0.136 g, 0.52 mmol), Yield: 90% (0.310 g). Yellow solid. mp: 183 – 187 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 10.52 (s, 1H, imidazole-NC₃H), 9.88 (s, 1H, imidazole-NC₃HCHN), 8.52 (s, 1H, imidazole-NC₃HCHN), 7.89 – 7.65 (m, 5H, quino-H), 7.52 – 7.48 (m, 8H, Ph-H), 7.28 – 7.21 (m, 9H, Ph-H), 2.31 [m, 2H, CH(CH₃)₂], 1.21 – 1.04 [m, 12H, CH(CH₃)₂] ppm. ³¹P (100 MHz, DMSO-d₆): δ 26.31. HRMS (ESI): m/z calcd for C₄₁H₃₉ClN₄PPd [M – Cl]⁺ 759.1636, found 759.1654. Anal. Calcd for C₄₁H₃₉Cl₂N₄PPd: C, 61.86; H, 4.94; N, 7.04.
Found: C, 62.02; H, 4.93; N, 7.27. The complex is only sparingly soluble in DMSO and hence a 13C NMR spectrum could not be obtained.

[Pd(HL2)(PPh$_3$)$_2$Cl$_2$] (II)

Path-1: [HL2Cl]Cl (0.205 g, 0.53 mmol), Pd(PPh$_3$)$_4$ (0.737 g, 0.63 mmol). Yield: 92% (0.369 g). **Path-2:** [HL2Cl]Cl (0.185 g, 0.43 mmol), Pd$_2$(dba)$_3$ (0.264 g, 0.28 mmol) and PPh$_3$ (0.151 g, 0.57 mmol), Yield: 90% (0.326 g). Yellow solid. mp: 187 – 191 °C. 1H NMR (400 MHz, DMSO-d_6): δ 10.64 (s, 1H, imidazole-NC$_H$N), 9.37 (s, 1H, imidazole-NC$_H$CHN), 8.35 (s, 1H, imidazole-NCHC$_H$N), 7.81 – 7.66 (m, 4H, quino-H), 7.50 – 7.45 (m, 6H, Ph-H), 7.29 – 7.21 (m, 11H, Ph-H), 2.39 (s, 3H, p-CH$_3$), 2.22 (s, 3H, o-CH$_3$), 1.98 (s, 3H, o-CH$_3$) ppm. 31P (100 MHz, DMSO-d_6): δ 26.58 ppm. HRMS (ESI): m/z calcd for C$_{38}$H$_{33}$ClN$_4$PPd [M – Cl]$^+$ 717.1166, found 717.1181. Anal. Calcd for C$_{38}$H$_{33}$ClN$_4$PPd: C, 60.53; H, 4.41; N, 7.43. Found: C, 60.09; H, 4.42; N, 7.79. The complex is only sparingly soluble in DMSO and hence a 13C NMR spectrum could not be obtained.

[Pd(L3)(PPh$_3$)$_2$Cl$_2$] (V)

[L3Cl]Cl (0.175 g, 0.47 mmol), Pd(PPh$_3$)$_4$ (0.653 g, 0.56 mmol). Yellow solid. Yield: 88% (0.307 g). mp: 224 – 229 °C. 1H NMR (400 MHz, DMSO-d_6): δ 9.32 (d, 1H, imidazole-NCHCHN), 8.33 (d, 1H, imidazole-NCHCHN), 7.87 – 7.83 (m, 1H, quino-H), 7.77 (dd, 2H, quino-H), 7.68 (d, 1H, quino-H), 7.41 – 7.30 (m, 15H, Ph-H), 7.19 – 7.15 (m, 5H, Ph-H), 5.58 (q, 2H, benzyl-CH$_2$), 2.14 (s, 3H, imidazole-CH$_3$) ppm. 31P (100 MHz, DMSO-d_6): δ 26.75 ppm. HRMS (ESI): m/z calcd for C$_{37}$H$_{31}$ClN$_4$PPd [M – Cl]$^+$ 703.1010, found 703.1017. Anal. Calcd for C$_{37}$H$_{31}$Cl$_2$N$_4$PPd: C, 60.06; H, 4.22; N, 7.57. Found: C, 60.02; H, 4.47;
N, 7.51. The complex is only sparingly soluble in DMSO and hence a 13C NMR spectrum could not be obtained.

$\text{[Pd(L4)(PPh}_3\text{)Cl}_2\text{]}$ (VI)

$[\text{L4Cl}]\text{Cl}$ (0.168 g, 0.52 mmol), Pd(PPh$_3$)$_4$ (0.725 g, 0.62 mmol). Yellow solid. Yield: 92% (0.332 g). mp: 241 – 243 °C. 1H NMR (400 MHz, DMSO-d_6): δ 9.16 (d, 2H, Py-H), 7.90 (d, 1H, quino-H), 7.77 – 7.65 (m, 3H, quino-H), 7.33 – 7.27 (m, 11H, Ph-H), 7.19 – 7.15 (m, 6H, Ph-H), 3.39 [s, 6H, N(CH$_3$)$_2$] ppm. 31P (100 MHz, DMSO-d_6): δ 33.14. HRMS (ESI): m/z calcd for C$_{33}$H$_{29}$ClN$_4$PPd [M – Cl]$^+$ 653.0859, found 653.0865. Anal. Calcd for C$_{33}$H$_{29}$ClN$_4$PPd: C, 57.45; H, 4.24; N, 8.12. Found: C, 58.03; H, 4.28; N, 8.22. The complex is only sparingly soluble in DMSO and hence a 13C NMR spectrum could not be obtained.

Synthesis of cyclometalated NHC-phosphine-Pd(II) complexes.

A Schlenk tube (13 mm X 90 mm) was charged with zwitterionic Pd(II) complex (1 equiv) and DMAP (1.1 equiv) in acetonitrile (10 mL). The mixture was stirred under N$_2$ atmosphere for 10 min at room temperature. The volatiles were removed under vacuum, the residue was washed with 10 mL of 20% HCl and extracted with chloroform (3 X 10 mL). After drying the solution with Na$_2$SO$_4$, volatiles were removed under vacuum. Recrystallization of the residue from acetone gave colorless crystals of $\text{[Pd(L1)(PPh}_3\text{)Cl}_2\text{]}$ at 0 °C.

$\text{[Pd(L1)(PPh}_3\text{)Cl}_2\text{]}$ (III) $\text{[Pd(HL1)(PPh}_3\text{)Cl}_2\text{]}$ (0.156 g, 0.19 mmol), DMAP (0.026 g, 0.21 mmol). White solid. Yield: 85% (0.126 g). mp: 256 – 258 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.98 (d, 1H, imidazole-NCHCHN), 7.75 (s, 1H, quino-H), 7.70 – 7.64 (m, 6H, Ph-H), 7.46 –

$\text{R}^1 = \text{2,6-Diisopropylphenyl}$
7.42 (m, 2H, quino-H), 7.31 – 7.21 (m, 13H, Ph-H), 7.03 – 7.00 (m, 2H, Ph-H), 2.77 [m, 2H, CH(CH₃)₂], 1.45 [d, 6H, CH(CH₃)₂], 1.17 [d, 6H, CH(CH₃)₂] ppm. \(^{13}\)C NMR (100 MHz, CDCl₃): \(\delta\) 145.11, 137.65, 135.20, 135.13, 132.62, 132.17, 130.19, 129.54, 128.07, 127.86, 127.81, 127.76, 127.66, 126.00, 123.84, 114.53, 28.93, 24.72, 24.02 ppm. \(^{31}\)P (100 MHz, CDCl₃): \(\delta\) 31.99 ppm. HRMS (ESI): \(m/z\) calcd for C₄₁H₃₈N₄PPd [M – Cl]⁺ 723.1868, found 723.1865. Anal. Calcd for C₄₁H₃₈ClN₄PPd: C, 64.83; H, 5.04; N, 7.38. Found: C, 64.64; H, 5.03; N, 7.52.

\[\text{[Pd(L2)(PPh₃)Cl]} \ (\text{IV}) \quad \text{[Pd(HL2)(PPh₃)Cl₂]} \]

(P.162 g, 0.21 mmol), DMAP (0.028 g, 0.23 mmol). Pale yellow solid. Yield: 82% (0.126 g). mp: 262 – 265 °C. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta\) 7.99 (d, 1H, imidazole-NCH₁H₁N), 7.75 (s, 1H, quino-H), 7.68 – 7.63 (m, 6H, Ph-H), 7.46 – 7.42 (m, 1H, quino-H), 7.31 – 7.21 (m, 11H, Ph-H), 6.98 – 6.93 (m, 3H, Ph-H), 2.30 (s, 3H, \(p\)-CH₃), 2.21 (s, 6H, \(o\)-CH₃) ppm. \(^{13}\)C NMR (100 MHz, CDCl₃): \(\delta\) 138.99, 137.57, 135.76, 135.32, 135.21, 134.75, 132.41, 131.95, 129.62, 129.10, 128.05, 127.90, 127.73, 127.62, 124.90, 114.94, 21.40, 18.42 ppm. \(^{31}\)P (100 MHz, CDCl₃): \(\delta\) 32.33 ppm. HRMS (ESI): \(m/z\) calcd for C₃₈H₃₂N₄PPd [M – Cl]⁺ 681.1399, found 681.1396. Anal. Calcd for C₃₈H₃₂ClN₄PPd: C, 63.61; H, 4.50; N, 7.81. Found: C, 62.95; H, 4.62; N, 7.75.

General procedure for Suzuki-Miyaura cross-coupling reactions: To a test tube (13 mm X 90 mm) with a stir bar were added arylboronic acid (1.2 mmol), K₂CO₃ (2.0 mmol), Pd catalyst (0.5 mol%), aryl bromide (1/n mmol, n = number of bromine atoms on aryl ring) and water (3 mL). The resulting mixture was stirred vigorously at room temperature or heated in an oil bath at 70 °C in open atmosphere. The progress of the reaction was monitored by TLC and \(^1\)H NMR spectroscopy. Most of the reactions were completed in 3 h. The reaction mixture was cooled to room temperature and mixed with water (5 mL). If the product was solid it was separated by simple
filtration using a frit and if the product was a semi-solid or an oily substance it was extracted with diethyl ether (3 X 10 mL). In the case of hydrophilic biaryl derivatives, 20 mL of 20% HCl was added to the reaction mixture and the product was either filtered or extracted with ethyl acetate (3 X 10 mL), the resulting organic portions were combined and dried over Na$_2$SO$_4$. The volatiles were removed using a rotary evaporator. The crude product was subjected to 1H NMR study. In case of impure products, purification was done by column chromatography (eluting with hexane/ethyl acetate) on silica gel (230-400 mesh). The identity of products was confirmed by NMR (1H NMR) spectroscopy. Many biaryls have already been reported and the data was compared with the literature data.

Hg poisoning test

To a 13 X 90 mm test tube were added catalyst (0.5 mol%), a drop of Hg (>500 equiv per Pd atom) and water (3 mL). The mixture was stirred for 10 min at room temperature before the addition of phenylboronic acid (1.2 mmol), K$_2$CO$_3$ (2 mmol) and 4-bromoacetophenone (1.0 mmol). The reaction mixture was stirred vigorously at room temperature or heated in an oil bath at 70 °C for 3 h. The work up was done as per the procedure given for carrying out Suzuki-Miyaura cross-coupling reactions. The yield of the product (4-acetylbiphenyl) was determined by 1H NMR. The Hg was recovered and stored safely.

PPh$_3$ poisoning test

Triphenylphosphine (2 mmol, at t = 0 min) was taken along with the catalyst (0.5 mol%), K$_2$CO$_3$ (2 mmol) and the coupling reagents [phenylboronic acid (1.2 mmol) and 4-bromoacetophenone (1.0 mmol)] in water (3 mL). The reaction mixture was stirred vigorously at room temperature or heated in an oil bath at 70 °C for 3 h under open atmosphere. The work up was done as per the
procedure given for carrying out Suzuki-Miyaura cross-coupling reactions. The yield of the product (4-acetylbiphenyl) was analyzed by 1H NMR.

Two-phase test

A mixture of 4-bromoacetophenone (0.199 g, 1 mmol), phenylboronic acid (0.304 g, 2.5 mmol), catalyst I (0.5 mol%) and K$_2$CO$_3$ (0.552 g, 4 mmol) in water (3 mL) was magnetically stirred in the presence of freshly prepared immobilized aryl bromide2 (0.200 g) at 70 °C for 3 h. The reaction mixture was cooled to room temperature and filtered through a G-4 frit. The residue was washed with 20 mL of water and then 20 mL of diethyl ether. The filtrate and the washings were collected together and mixed with water (10 mL). The resulting mixture was extracted with 20 mL of diethyl ether. The solvent from the organic extract was evaporated on a rotary evaporator and the white residue thus obtained was identified by 1H NMR. The residue collected on G-4 frit was hydrolyzed with KOH (1.68 g dissolved in 5 mL of water + 10 mL of EtOH) at 90 °C for 3 days. The reaction mixture was neutralized with aqueous HCl (20% v/v). The products were extracted with dichloromethane (30 mL), followed by ethyl acetate (40 mL). The organic extracts were combined together and the solvents were evaporated off under vacuum. The resulting residue was subjected to 1H NMR to identify the products.

Analytical data

1. 4-Acetylbiphenyl (entry 1 of table 3)$^{[3]}$

1H NMR (400 MHz, CDCl$_3$): δ 8.03 (d, 2H), 7.68 (d, 2H), 7.63 (dd, 2H), 7.46 (m, 2H), 7.41 (m, 1H), 2.64 (s, 3H) ppm.

2. 4-Nitrobiphenyl (entry 2 of table 3)$^{[3]}$

1H NMR (400 MHz, CDCl$_3$): δ 8.29 – 8.27 (d, 2H), 7.73 – 7.72 (d, 2H), 7.63 – 7.61 (m, 2H), 7.52 – 7.43 (m, 3H) ppm
3. **Biphenyl-4-carbonitrile** (entry 3 of table 3)\[^{[3]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.73 – 7.67 (m, 4H), 7.60 – 7.58 (m, 2H), 7.50 – 7.42 (m, 3H) ppm.

4. **Biphenyl-4-carbaldehyde** (entry 4 of table 3)\[^{[3]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 10.06 (s, 1H), 7.97 – 7.94 (d, 2H), 7.77 – 7.75 (d, 2H), 7.65 – 7.63 (m, 2H), 7.51 – 7.47 (m, 2H), 7.44 – 7.41 (m, 1H) ppm.

5. **4-(Trifluoromethyl)biphenyl** (entry 5 of table 3)\[^{[4]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.69 (s, 4H), 7.61 – 7.59 (m, 2H), 7.49 – 7.46 (m, 2H), 7.42 – 7.39 (m, 1H) ppm.

6. **4-Methoxybiphenyl** (entry 6 of table 3)\[^{[5]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.57 – 7.52 (m, 4H), 7.44 – 7.40 (t, 2H), 7.32 – 7.30 (t, 1H), 6.99 – 6.97 (d, 2H), 3.85 (s, 3H) ppm.

7. **Biphenyl-4-amine** (entry 7 of table 3)\[^{[3]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.55 – 7.52 (m, 2H), 7.43 – 7.37 (m, 4H), 7.29 – 7.26 (t, 1H), 6.77 – 6.75 (d, 2H), 3.72 (s, 2H) ppm.

8. **4-Methylbiphenyl** (entry 8 of table 3)\[^{[4]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.55 – 7.50 (t, 2H), 7.45 – 7.43 (t, 2H), 7.42 – 7.37 (m, 2H), 7.35 – 7.24 (m, 1H), 7.19 – 7.11 (d, 2H), 2.33 (s, 3H) ppm.

9. **4-Fluorobiphenyl** (entry 9 of table 3)\[^{[5]}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.56 – 7.53 (m, 4H), 7.45 – 7.41 (m, 2H), 7.36 – 7.34 (m, 1H), 7.15 – 7.09 (m, 2H) ppm.
10. **4-Chlorobiphenyl** (entry 10 of table 3)[5]

1H NMR (400 MHz, CDCl$_3$): δ 7.56 – 7.51 (m, 4H), 7.46 – 7.36 (m, 5H) ppm.

11. **Biphenyl** (entry 11 of table 3)[6]

1H NMR (400 MHz, CDCl$_3$): δ 7.58 (d, 4H), 7.44 (t, 4H), 7.36 (t, 2H) ppm.

12. **3-Nitro-biphenyl** (entry 12 of table 3)[7]

1H NMR (400 MHz, CDCl$_3$): δ 8.48 (d, 1H), 8.22 – 8.19 (dd, 1H), 7.93 – 7.91 (d, 1H), 7.64 – 7.59 (m, 3H), 7.52 – 7.40 (m, 3H) ppm.

13. **Biphenyl-2-carbonitrile** (entry 13 of table 3)[8]

1H NMR (400 MHz, CDCl$_3$): δ 7.75 (d, 1H), 7.63 (t, 1H), 7.55 (m, 2H), 7.49 (m, 3H), 7.43 (m, 2H) ppm.

14. **2-Aminobiphenyl** (entry 14 of table 3)[6]

1H NMR (400 MHz, CDCl$_3$): δ 7.51 – 7.46 (m, 4H), 7.39 – 7.36 (m, 1H), 7.19 – 7.14 (m, 2H), 6.86 (m, 1H), 6.79 (m, 1H), 3.66 (s, 2H) ppm.

15. **2-Nitro-biphenyl** (entry 15 of table 3)[6]

1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, 1H), 7.64 – 7.60 (m, 1H), 7.50 – 7.40 (m, 5H), 7.33 – 7.31 (m, 2H) ppm.

16. **2-Methoxybiphenyl** (entry 16 of table 3)[4]

1H NMR (400 MHz, CDCl$_3$): δ 7.55 – 7.53 (m, 2H), 7.44 – 7.40 (m, 2H), 7.35 – 7.32 (m, 3H), 7.02 (d, 1H), 6.99 (d, 1H), 3.82 (s, 3H) ppm.

17. **2,6-Dimethyl-biphenyl** (entry 17 of table 3)[4]
\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 7.43 (t, 2H), 7.36 – 7.32 (m, 1H), 7.19 – 7.11 (m, 5H), 2.04 (s, 6H) ppm.

18. **1,4-Diphenylbenzene** (entry 18 of table 3)\(^5\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 7.69 – 7.65 (m, 8H), 7.49 – 7.46 (m, 4H), 7.39 – 7.36 (m, 2H) ppm.

19. **\(o\)-Terphenyl** (entry 19 of table 3)\(^5\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 7.33 (m, 4H), 7.12 – 7.04 (m, 10H) ppm.

20. **1,3,5-Triphenyl benzene** (entry 20 of table 3)\(^5\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 7.79 (s, 3H), 7.70 (d, 6H), 7.49 (m, 6H), 7.40 (m, 3H) ppm.

21. **4,4'-Diacetylbiphenyl** (entry 1 of table 4)\(^9\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 8.07 – 8.04 (d, 4H), 7.73 – 7.71 (d, 4H), 2.65 (s, 6H) ppm.

22. **4-Acetyl biphenyl-4-carboxaldehyde** (entry 2 of table 4)\(^9\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 10.08 (s, 1H), 8.08 – 8.05 (d, 2H), 7.99 – 7.97 (d, 2H), 7.80 – 7.78 (d, 2H), 7.74 – 7.72 (d, 2H), 2.65 (s, 3H) ppm.

23. **1-(4'-Fluoro-biphenyl-4-yl)-ethanone** (entry 3 of table 4)\(^{10}\)

\(^1\)H NMR (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 8.03 (d, 2H), 7.64 (d, 2H), 7.63 – 7.57 (m, 2H), 7.16 (t, 2H), 2.64 (s, 3H) ppm.

24. **1-(4'-Chlorobiphenyl-4-yl)ethanone** (entry 4 of table 4)\(^{11}\)

\(^1\)H NMR: (400 MHz, \(\text{CDCl}_3\)): \(\delta\) 8.02 (d, 2H), 7.64 (d, 2H), 7.55 (d, 2H), 7.43 (d, 2H), 2.63 (s, 3H) ppm.
25. **4-Acetyl-4methoxybiphenyl** (entry 5 of table 4)\(^{[10]}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.02 – 7.99 (d, 2H), 7.65 – 7.63 (d, 2H), 7.59 – 7.57 (d, 2H), 7.01 – 6.99 (d, 2H), 3.86 (s, 3H), 2.63 (s, 3H) ppm.

26. **4-Acetyl-(4-methyl)biphenyl** (entry 6 of table 4)\(^{[3]}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.03 – 8.01 (d, 2H), 7.68 – 7.66 (d, 2H), 7.55 – 7.52 (d, 2H), 7.29 – 7.26 (d, 2H), 2.63 (s, 3H), 2.41 (s, 3H) ppm.

27. **4-Acetyl-3'-methylbiphenyl** (entry 7 of table 4)\(^{[10]}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.02 (d, 2H), 7.68 (d, 2H), 7.44 – 7.36 (m, 3H), 7.23 – 7.21 (m, 1H), 2.64 (s, 3H), 2.43 (s, 3H) ppm.

28. **3,5-Dichlorobiphenyl** (entry 8 of table 4)\(^{[11]}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.05 – 8.03 (d, 2H), 7.64 – 7.62 (d, 2H), 7.49 – 7.48 (d, 2H), 7.40 – 7.38 (m, 1H), 2.64 (s, 3H) ppm.

29. **4-Tert-butylphenylacetophenone** (entry 9 of table 4)\(^{[12]}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.02 (d, 2H), 7.68 (d, 2H), 7.59 – 7.49 (m, 4H), 2.63 (s, 3H), 1.37 (s, 9H) ppm.

30. **4'-Ethyl-3,5-dimethyl-1,1'-biphenyl** (entry 10 of table 4)

Colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.41 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 5.1 Hz, 2H), 6.88 (s, 1H), 2.60 (q, J = 7.6 Hz, 2H), 2.28 (s, 6H), 1.18 (t, J = 7.6 Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 143.31, 141.36, 138.97, 138.30, 128.75, 128.33,
127.14, 125.10, 28.64, 21.54, 15.72 ppm. HRMS (ESI): m/z calcd for C_{16}H_{19} [M + H]^+ 211.1486, found 211.1479.

31. **4'-Tert-butyl-2,4,6-trimethylbiphenyl** (entry 11 of table 4)[13]

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 7.43 \text{ (d, 2H)}, 7.08 \text{ (d, 2H),} \\
6.96 \text{ (s, 2H), 2.35 (s, 3H), 2.04 (s, 6H), 1.39 (s, 9H) ppm.} \]

32. **4'-Methylbiphenyl-2-carbonitrile** (entry 12 of table 4)[6]

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 7.74 \text{ (d, 1H)}, 7.62 \text{ (t, 1H),} \\
7.50 – 7.39 \text{ (m, 4H), 7.30 (d, 2H), 2.42 (s, 3H) ppm.} \]

33. **4'-Chlorobiphenyl-2-amine** (entry 13 of table 4)[3]

\[\text{1H NMR (CDCl}_3, 400 MHz): \delta 7.40 \text{ (s, 4H), 7.20 – 7.16 (t, 1H),} \\
7.11 – 7.09 \text{ (d, 1H), 6.88 – 6.84 (t, 1H), 6.81 – 6.79 (d, 1H) ppm.} \]

34. **m-Terphenyl, 4,4''-diethyl** (entry 14 of table 4)[14]

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 7.79 \text{ (s, 1 H), 7.58 (m, 6H),} \\
7.51 – 7.44 \text{ (m, 1H), 7.31 (d, 4H), 2.73 (q, 4H), 1.31 (t, 6H) ppm.} \]

35. **4'-(2,4-Difluorophenyl)acetophenone** (entry 15 of table 4)[11]

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 8.02 \text{ (d, 2H), 7.60 (d, 2H),} \\
7.46 – 7.40 \text{ (m, 1H), 7.00 – 6.90 (m, 2H), 2.63 (s, 3H) ppm.} \]

36. **5-Phenylpyrimidine** (entry 1 of table 5)[5]

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 9.23 \text{ (s, 1 H), 9.00 (s, 2H),} \\
7.60 – 7.58 \text{ (d, 2H), 7.55 – 7.48 (m, 3H) ppm.} \]

37. **3-Phenylquinoline** (entry 2 of table 5)[3]
\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 9.19 – 9.18\) (d, 1H), 8.33 (d, 1H), 8.18 (d, 1H), 7.89 (d, 1H), 7.76 – 7.70 (m, 3H), 7.61 – 7.51 (m, 3H), 7.46 – 7.43 (m, 1H) ppm.

38. **3-Phenylthiophene** (entry 3 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.61\) (d, 2H), 7.46 – 7.38 (m, 5H), 7.31 – 7.28 (m, 1H) ppm.

39. **2-Phenylthiophene** (entry 4 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.65 – 7.63\) (d, 2H), 7.41 – 7.38 (t, 2H), 7.34 – 7.29 (m, 3H), 7.11 – 7.09 (m, 1H) ppm.

40. **2-Phenylpyridine** (entry 5 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.71\) (d, 1H), 8.10 – 7.98 (m, 2H), 7.76 – 7.72 (m, 2H), 7.50 – 7.40 (m, 3H), 7.25 – 7.21 (m, 1H) ppm.

41. **3-Phenylpyridine** (entry 6 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.88\) (s, 1H), 8.62 (d, 1H), 7.88 (d, 1H), 7.58 (d, 2H), 7.48 (t, 2H), 7.43 – 7.36 (m, 2H) ppm.

42. **3-(4-Fluorophenyl)pyridine** (entry 7 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.81\) (s, 1H), 8.58 (dd, 1H), 7.87 – 7.85 (m, 1H), 7.55 – 7.52 (m, 2H), 7.37 (dd, 1H), 7.19 – 7.13 (m, 2H) ppm.

43. **5-Chloro-2-phenylpyridine** (entry 8 of table 5)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.64\) (d, 1H), 7.95 (m, 2H), 7.73 – 7.66 (m, 2H), 7.49 – 7.42 (m, 3H) ppm.

44. **5-Phenyl-1H-indole** (entry 9 of table 5)
1H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.77 (m, 1H), 7.58 – 7.56 (m, 2H), 7.42 – 7.33 (m, 4H), 7.24 – 7.20 (m, 1H), 7.14 – 7.11 (m, 1H), 6.51 (m, 1H) ppm.

45. **5-(4-Fluorophenyl)pyrimidine** (entry 10 of table 5)[18]

δ 9.22 (s, 1H), 8.94 (s, 2H), 7.58 – 7.54 (m, 2H), 7.25 – 7.20 (m, 2H) ppm.

46. **5-(4-Chlorophenyl)pyrimidine** (entry 11 of table 5)[18]

δ 9.23 (s, 1H), 8.95 (s, 2H), 7.51 (m, 4H) ppm.

47. **5-(4-Methyl phenyl)pyrimidine** (entry 12 of table 5)[18]

δ 9.19 (s, 1H), 8.96 (s, 2H), 7.48 (d, 2H), 7.33 (d, 2H), 2.42 (s, 3H) ppm.

48. **4-(5-pyrimidinyl)benzaldehyde** (entry 13 of table 5)[19]

δ 10.10 (s, 1H), 9.28 (s, 1H), 9.02 (s, 2H), 8.06 (d, 2H), 7.78 (d, 2H) ppm.

49. **1-(4-(Thiophen-3-yl)phenyl)ethanone** (entry 14 of table 5)[22]

δ 7.99 (d, 2H), 7.69 (d, 2H), 7.58 (dd, 1H), 7.43 (m, 2H), 2.62 (s, 3H) ppm.

50. **4-(4’-Acetylphenyl)dibenzofuran** (entry 15 of table 5)[20]

δ 8.13 (d, 2H), 8.04 – 7.98 (m, 4H), 7.65 – 7.60 (m, 2H), 7.51 – 7.36 (m, 3H), 2.68 (s, 3H) ppm.

51. **4-(Benzo[b]thiophen-2-yl)benzaldehyde** (entry 16 of table 5)[21]
1H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 7.96 – 7.82 (m, 6H), 7.71 (s, 1H), 7.40 – 7.37 (m, 2H) ppm.

52. 4-(1H-Indol-5-yl)benzonitrile (entry 17 of table 5)[22]

1H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 7.88 (d, 1H), 7.72 (m, 4H), 7.50 (d, 1H), 7.44 (m, 1H), 7.28 (m, 1H), 6.64 (m, 1H) ppm.

53. Diphenylmethane (entry 1 of table 6)[23]

1H NMR (400 MHz, CDCl₃): δ 7.20 – 7.16 (m, 4H), 7.11 – 7.08 (m, 6H), 3.88 (s, 2H) ppm.

54. 1-Benzyl-4-nitrobenzene (entry 2 of table 6)[24]

1H NMR (400 MHz, CDCl₃): δ 8.13 (d, 2H), 7.34 (m, 4H), 7.24 (m, 1H), 7.16 (d, 2H), 4.07 (s, 2H) ppm.

55. 1-Benzyl-2-nitrobenzene (entry 3 of table 6)[24]

1H NMR (400 MHz, CDCl₃): δ 7.91 (dd, 1H), 7.50 (m, 1H), 7.36 (m, 1H), 7.30 – 7.21 (m, 4H), 7.19 – 7.13 (m, 2H), 4.30 (s, 2H) ppm.

56. 1-Benzyl-2-fluorobenzene (entry 4 of table 6)[23]

1H NMR (400 MHz, CDCl₃): δ 7.40 – 7.31 (m, 2H), 7.31 – 7.16 (m, 5H), 7.15 – 7.04 (m, 2H), 4.07 (s, 2H) ppm.

57. 2-Chlorodiphenylmethane (entry 5 of table 6)[25]

1H NMR (400 MHz, CDCl₃): δ 7.54 – 7.25 (m, 9H), 4.21 (s, 2H) ppm.

58. 3-Chlorodiphenylmethane (entry 6 of table 6)[26]

1H NMR (400 MHz, CDCl₃): δ 7.16 – 7.13 (m, 2H), 7.09 – 7.01 (m, 6H), 6.93 – 6.91 (m, 1H), 3.82 (s, 2H) ppm.
59. **1-Benzyl-4-methylbenzene** (entry 7 of table 6)[25]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.42 – 7.32 (m, 2H), 7.32 – 7.22 (m, 3H), 7.22 – 7.12 (m, 4H), 4.03 (s, 2H), 2.40 (s, 3H) \text{ ppm.} \]

60. **1-Benzyl-3-methylbenzene** (entry 8 of table 6)[25]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.29 – 7.26 (m, 2H), 7.21 – 7.15 (m, 4H), 7.01 – 6.98 (m, 3H), 3.94 (s, 2H), 2.30 (s, 3H) \text{ ppm.} \]

61. **4-Chlorobenzylbenzene** (entry 10 of table 6)[25]

\[^1H \text{-NMR (400 MHz, CDCl}_3\text{): } \delta 7.29 – 7.15 (m, 5H), 7.13 – 7.11 (m, 2H), 7.06 – 7.04 (m, 2H), 3.92 (s, 2H) \text{ ppm.} \]

62. **4-Benzyl-acetophenone** (entry 11 of table 6)[27]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.88 (d, 2H), 7.35 – 7.17 (m, 7H), 4.03 (s, 2H), 2.57 (s, 3H) \text{ ppm.} \]

63. **1-Methyl-4-(2-fluorobenzyl)benzene** (entry 12 of table 6)[23]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.22 – 7.07 (m, 6H), 7.05 – 7.01 (m, 2H), 3.98 (s, 2H), 2.33 (s, 3H) \text{ ppm.} \]

64. **1-Methyl-4-(4-nitrobenzyl)benzene** (entry 13 of table 6)[28]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 8.13 (d, 2H), 7.32 (d, 2H), 7.12 (d, 2H), 7.05 (d, 2H), 4.03 (s, 2H), 2.33 (s, 3H) \text{ ppm.} \]

65. **2-Benzylbiphenyl** (entry 14 of table 6)[25]

\[^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.38 – 7.11 (m, 12H), 6.97 (d, 2H), 3.94 (s, 2H) \text{ ppm.} \]

66. **3-Benzylthiophene** (entry 15 of table 6)[29]
67. **4-Benzyl dibenzo[b,d]furan** (entry 16 of table 6)[29]

1H NMR (400 MHz, CDCl$_3$): δ 7.18 – 7.32 (m, 6H), 6.90 – 6.91 (m, 2H), 3.98 (s, 2H) ppm.

![Structure of 6im]

68. **2-Benzylbenzo[b]thiophene** (entry 17 of table 6)[30]

1H NMR (400 MHz, CDCl$_3$): δ 7.94 – 7.90 (m, 1H), 7.79 (dd, 1H), 7.57 (m, 1H), 7.45 – 7.41 (m, 1H), 7.33 – 7.17 (m, 8H), 4.33 (s, 2H) ppm.

![Structure of 6in]

69. **4-Carboxybiphenyl** (entry 1 of table 7)[5]

1H NMR (400 MHz, DMSO-d$_6$): δ 12.96 (s, 1H), 8.02 (d, 2H), 7.79 (d, 2H), 7.73 (d, 2H), 7.50 (t, 2H), 7.43 (t, 1H) ppm.

![Structure of 6ra]

70. **Biphenyl-3-ylcarboxylic acid** (entry 2 of table 7)[31]

1H NMR (400 MHz, CDCl$_3$): δ 8.37 (s, 1H), 8.11 (d, 1H), 7.85 (d, 1H), 7.65 – 7.54 (m, 3H), 7.50 – 7.39 (m, 3H) ppm.

![Structure of 6sa]

71. **6-Phenynaphthalen-2-ol** (entry 3 of table 7)[32]

1H NMR (400 MHz, CDCl$_3$): δ 7.97 (s, 1H), 7.82 – 7.69 (m, 5H), 7.48 (t, 2H), 7.37 (t, 1H), 7.20 – 7.12 (m, 2H) ppm.

![Structure of 6ta]

72. **4-Phenylphenol** (entry 4 of table 7)[3]

1H NMR (400 MHz, CDCl$_3$): δ 7.55 – 7.53 (m, 2H), 7.49 – 7.46 (m, 2H), 7.43 – 7.39 (m, 2H), 7.32 – 7.28 (m, 1H), 6.92 – 6.90 (m, 2H) ppm.

![Structure of 6ua]

73. **5-Phenyl salicylaldehyde** (entry 5 of table 7)[9]
74. **3',5'-Dichloro-4-hydroxy-[1,1'-biphenyl]-3-carbaldehyde** (entry 6 of table 7)

White solid. mp: 166 – 168 °C. 1H NMR (400 MHz, CDCl$_3$): δ 11.07 (s, 1H), 9.98 (s, 1H), 7.75 – 7.68 (m, 2H), 7.42 (d, J = 1.5 Hz, 2H), 7.35 (s, 1H), 7.10 (d, J = 8.3 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 196.75, 160.87, 140.64, 135.31, 131.22, 128.47, 126.90, 126.01, 120.77, 119.97, 118.30 ppm. HRMS (ESI): m/z calcd for C$_{13}$H$_9$Cl$_2$O$_2$ [M + H]$^+$ 266.9978, found 266.9969.

75. **2-Hydroxy-5-(thiophen-3-yl)benzaldehyde** (entry 7 of table 7)

White solid. mp: 117 – 119 °C. 1H NMR (400 MHz, CDCl$_3$): δ 10.98 (s, 1H), 9.96 (s, 1H), 7.79 – 7.75 (m, 2H), 7.43 – 7.39 (m, 2H), 7.35 (d, J = 4.8 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 196.75, 160.87, 140.64, 135.31, 131.22, 128.47, 126.90, 126.01, 120.77, 119.97, 118.30 ppm. HRMS (ESI): m/z calcd for C$_{11}$H$_9$O$_2$S [M + H]$^+$ 205.0323, found 205.0337.

76. **4-Biphenylacetic acid, Felbinac** (entry 8 of table 7)33

1H NMR (400 MHz, CDCl$_3$): δ 7.58 – 7.55 (m, 4H), 7.44 (m, 2H), 7.37 – 7.32 (m, 3H), 3.70 (s, 2H) ppm.

77. **4-Hydroxy-[1,1'-biphenyl]-3-carboxylic acid** (entry 9 of table 7)31

1H NMR (400 MHz, DMSO-d$_6$): δ 8.13 (d, 1H), 7.80 (t, 1H), 7.62 (t, 2H), 7.43 (m, 2H), 7.33 (m, 1H), 7.04 (d, 1H) ppm.
78. **4'-Chloro-4-hydroxy-[1,1'-biphenyl]-3-carboxylic acid** (entry 10 of table 7)\(^{[34]}\)

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.01 (d, 1H), 7.81 (t, 1H), 7.63 (t, 2H), 7.47 (m, 2H), 7.04 (d, 1H) ppm.

79. **4-Hydroxy-4'-methoxy-[1,1'-biphenyl]-3-carboxylic acid** (entry 11 of table 7)\(^{[34]}\)

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.08 (d, 1H), 7.77 (t, 1H), 7.55 (t, 2H), 7.02 – 6.99 (m, 3H), 3.82 (s, 3H) ppm.

80. **2-(4-Chlorobenzyl)-3-phenylacrylonitrile**

Colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.74 – 7.71 (m, 2H), 7.42 (dd, \(J = 5.1, 2.1\) Hz, 3H), 7.35 – 7.32 (m, 2H), 7.24 – 7.21 (m, 2H), 6.97 (s, 1H), 3.68 (s, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 144.46, 135.04, 133.46, 130.45, 130.38, 129.85, 129.21, 129.04, 129.00, 128.84, 118.60, 110.30, 41.66 ppm. HRMS (ESI): \(m/z\) calcd for C\(_{16}\)H\(_{12}\)ClNNa [M + Na]\(^{+}\) 276.0555, found 276.0577.

81. **2-(4-Methoxybenzyl)-3-phenylacrylonitrile**

Colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.73 – 7.71 (m, 2H), 7.40 – 7.38 (m, 3H), 7.21 – 7.19 (m, 2H), 6.94 – 6.89 (m, 3H), 3.81 (s, 3H), 3.65 (s, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 159.01, 143.75, 133.72, 130.18, 130.14, 128.92, 128.78, 128.51, 118.89, 114.43, 111.38, 55.41, 41.52 ppm. HRMS (ESI): \(m/z\) calcd for C\(_{17}\)H\(_{16}\)NO [M + H]\(^{+}\) 250.1231, found 250.1254.

82. **2-(Dibenzo[b,d]furan-4-ylmethyl)-3-phenylacrylonitrile**
White solid. Mp: 100 – 102 °C. 1H NMR (400 MHz, CDCl$_3$):
\[\delta 7.98 – 7.94 \text{ (m, 1H)}, \ 7.91 \text{ (dd, } J = 7.6, \ 1.3 \text{ Hz, 1H}), \ 7.75 – 7.69 \text{ (m, 2H)}, \ 7.59 \text{ (d, } J = 8.2 \text{ Hz, 1H}), \ 7.49 – 7.44 \text{ (m, 1H),}
\]
\[7.42 – 7.33 \text{ (m, 6H), } 7.13 \text{ (s, 1H), } 4.09 \text{ (s, 2H) ppm.} \]
13C NMR (100 MHz, CDCl$_3$):
\[\delta 156.11, \ 154.56, \ 144.65, \ 133.58, \ 130.13, \ 128.79, \ 128.73, \ 127.74, \ 127.29, \ 124.48, \ 124.31, \ 123.16, \ 122.89, \ 120.82, \ 120.46, \ 119.98,
\]
\[118.75, \ 111.79, \ 109.21, \ 35.97 \text{ ppm.} \]
HRMS (ESI): m/z calcd for C$_{22}$H$_{16}$NO [M + H]$^+$ 310.1231, found 310.1255.
Figure S1. Molecular structure of [HL2Cl](PF₆). All hydrogen atoms and the counter anion have been removed for clarity. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å]: Cl1–C5 1.732(6), C12–C13 1.368(7), N1–C12 1.450(6), N1–C3 1.334(6), N2–C3 1.340(6), N2–C4 1.428(6), C4–C5 1.420(7), N3–C5 1.281(7). Selected bond angles [°]: N3–C5–Cl1 116.0(4), N3–C5–C4 122.8(5), C4–N4–Cl1 117.1(4), C1–N2–C4 127.0(4), N4–C4–N2 115.5(4), C3–N1–C12 128.0(4), C3–N2–C4 124.6(4), C2–N1–C12 122.8(4).

Figure S2. Molecular structure of [L4Cl]Cl. All hydrogen atoms, solvent molecules and counter anion have been removed for clarity. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å]: Cl1–C7 1.734(15), N3–C7 1.295(2), C7–C6 1.431(2), N4–C6
1.302(19), N2–C6 1.428(19), N2–C1 1.370(19), N2–C5 1.371(19). Selected bond angles [°]: N3–C7–Cl1 116.23(11), C6–C7–Cl1 121.05(12), N2–C6–C7 122.54(13), N4–C6–N2 116.30.

Table S1 Suzuki-Miyaura coupling reaction of 4-bromoacetophenone at different catalyst loading

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>Catalyst (mol%)</th>
<th>Time/h</th>
<th>(^{\text{b}})Yield (%)</th>
<th>TON</th>
<th>TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>0.5</td>
<td>3</td>
<td>98</td>
<td>196</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.5</td>
<td>3</td>
<td>98</td>
<td>196</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>0.06</td>
<td>5</td>
<td>97</td>
<td>1,616</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.06</td>
<td>5</td>
<td>95</td>
<td>1,583</td>
<td>316</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0.02</td>
<td>8</td>
<td>95</td>
<td>4,750</td>
<td>593</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.02</td>
<td>8</td>
<td>92</td>
<td>4,600</td>
<td>575</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>0.005</td>
<td>12</td>
<td>72(^{\text{c}}) (95)(^{\text{d}})</td>
<td>14,400 (19,000)</td>
<td>1,200 (1,583)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.005</td>
<td>12</td>
<td>69(^{\text{c}}) (92)(^{\text{d}})</td>
<td>13,800 (18,400)</td>
<td>1,150 (1,533)</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>0.001</td>
<td>24</td>
<td>82(^{\text{c,d}})</td>
<td>82,000</td>
<td>3,416</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.001</td>
<td>24</td>
<td>80(^{\text{c,d}})</td>
<td>80,000</td>
<td>3,333</td>
</tr>
</tbody>
</table>

\(^{\text{a}}\)Reaction conditions: 4-bromoacetophenone (1.0 mmol), phenylboronic acid (1.2 mmol), K\(_{2}\)CO\(_3\) (2.0 mmol), H\(_2\)O (3 mL), 0.5 mol% [Pd], at room temperature, in air. \(^{\text{b}}\)Isolated yield (the purity of the isolated product was confirmed by \(^{1}\)H NMR). \(^{\text{c}}\)Isolated yield after column chromatography. \(^{\text{d}}\)Temperature of oil bath 70 °C.

Investigations into the nature of the catalysis (homogeneous vs heterogeneous)

There are several poison tests known in the literature to distinguish between homogeneous and heterogeneous catalysis. The most common method is the addition of mercury, which leads to amalgamation of the metal or adsorption on the metal surface of heterogeneous catalyst. There is another popular method in which a heterogeneous catalyst is poisoned by treating it with ligands like CS\(_2\), PPh\(_3\) or thiophene in substoichiometric amount (less than 1.0 equivalent per metal atom).\(^{35}\) The poisoning tests \(\text{viz}\) the addition of Hg and the addition of PPh\(_3\) were carried out on I and VI and the results are furnished in Table S2. Though the room temperature reactions were affected significantly, the reactions conducted at 70 °C afforded excellent yields in both the tests.
It is noteworthy that in case of PPh$_3$ poison test, even after the addition of 2 equivalents of PPh$_3$, the yields were almost quantitative, when the reaction was conducted at 70 °C.

Table S2 Summary of poisoning experiments for complexes I and VI

<table>
<thead>
<tr>
<th>Entry</th>
<th>Poisoning additives</th>
<th>% Isolated yield of 3aa (by 1H NMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[Pd(HL1)(PPh$_3$)Cl$_2$] (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rt</td>
</tr>
<tr>
<td>1</td>
<td>Hg (one drop)</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>PPh$_3$ (2 equiv per metal)</td>
<td>38</td>
</tr>
</tbody>
</table>

Further, a two phase test, which is more confirmative in determining the nature of the catalysis (homogeneous vs heterogeneous), has also been performed on I. In this test, generally an immobilized aryl bromide, an aryl bromide and excess of arylboronic acid are used. If the catalyst is homogeneous, the immobilized aryl bromide will also be converted into product, which is not expected in case of a heterogeneous catalyst. A mixture of 4-bromoacetophenone and freshly prepared immobilized aryl bromide were treated with excess of phenylboronic acid in the presence of I as catalyst and K$_2$CO$_3$ in water at 70 ºC (Scheme S1). After 3 h of stirring, the mixture was filtered and the precipitate was extracted with ether, and analyzed with 1H NMR. The NMR spectrum showed that a 98% conversion of 4-bromoacetophenone occurred. The residue, which is basically the immobilized amide, was hydrolyzed and the resultant products were analyzed using 1H NMR after work up. The analysis with 1H NMR indicated that the immobilized aryl bromide
was also converted to the cross coupled product to the extent of 52%. These results indicate that the catalysis is largely homogeneous.

\[
\text{Si} \quad \text{O} \quad \text{O} \quad \text{R} \\
\text{NH} \quad \text{B(OH)}_2 \quad \text{Br}
\]

\[
\begin{align*}
\text{HO} & \quad \text{Br} \\
\text{HO} & \quad \text{Br} \\
\end{align*}
\]

Ratio; 48 : 52

\[
98\%
\]

Scheme S1 Two phase test

Table S3 Crystal data for Compounds [HL2Cl](PF₆), [L₄Cl]Cl, I, II, III and V.

<table>
<thead>
<tr>
<th></th>
<th>HL2Cl</th>
<th>[L₄Cl]Cl</th>
<th>[Pd(L)(PPh₃)Cl] (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C₂₀H₁₈F₆N₄PCl</td>
<td>C₁₅H₁₈Cl₂N₄O₂</td>
<td>C₄₁H₃₈N₄PdPCl</td>
</tr>
<tr>
<td>formula wt</td>
<td>494.80</td>
<td>357.23</td>
<td>759.57</td>
</tr>
<tr>
<td>temp (K)</td>
<td>150(2)</td>
<td>120(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>cryst syst</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>Pca₂₁</td>
<td>P–I</td>
<td>P–I</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>24.3122(14)</td>
<td>7.2346(4)</td>
<td>9.2199(5)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>8.5288(6)</td>
<td>9.1795(5)</td>
<td>11.5698(7)</td>
</tr>
<tr>
<td></td>
<td>[Pd(HL1)(PPh₃)Cl₂]·2CH₃CN (I)</td>
<td>[Pd(HL2)(PPh₃)Cl₂]·2CH₃CN (II)</td>
<td>[Pd(L3)(PPh₃)Cl₂]·CH₃CN (V)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>empirical formula</td>
<td>C₄₅H₄₅N₆PCL₂Pd</td>
<td>C₄₂H₃₉Cl₂N₆PdPd</td>
<td>C₃₉H₃₆N₅PCL₂Pd</td>
</tr>
<tr>
<td>formula wt</td>
<td>878.14</td>
<td>836.06</td>
<td>783.05</td>
</tr>
<tr>
<td>temp (K)</td>
<td>150(2)</td>
<td>150(2)</td>
<td>200(2)</td>
</tr>
<tr>
<td>cryst syst</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
</tbody>
</table>

Table S3 continued

\[R_1 = \frac{\sum||F_o|| - |F_c||}{\sum|F_o|}; \quad wR_2 = \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2}^{0.5}. \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(c (\text{Å}))</td>
<td>10.4839(8)</td>
<td>13.2726(8)</td>
<td>17.5646(10)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>90</td>
<td>86.782(5)</td>
<td>83.401(5)</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>90</td>
<td>77.574(5)</td>
<td>88.501(5)</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>90</td>
<td>70.405(5)</td>
<td>70.238(6)</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>2173.9(3)</td>
<td>810.81(8)</td>
<td>1751.48(18)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\rho_{\text{calcd}}) (Mg m(^{-3}))</td>
<td>1.512</td>
<td>1.463</td>
<td>1.440</td>
</tr>
<tr>
<td>(\mu) (mm(^{-1}))</td>
<td>0.316</td>
<td>0.415</td>
<td>0.688</td>
</tr>
<tr>
<td>(F(000))</td>
<td>1008.0</td>
<td>372.0</td>
<td>780.0</td>
</tr>
<tr>
<td>cryst size (mm)</td>
<td>0.31 x 0.28 x 0.18</td>
<td>0.5 x 0.35 x 0.09</td>
<td>0.4 x 0.3 x 0.03</td>
</tr>
<tr>
<td>(\theta) range (deg)</td>
<td>7.96 – 58.22</td>
<td>8.88 – 58.22</td>
<td>8 – 57.62</td>
</tr>
<tr>
<td>no. of collected/unique reflns</td>
<td>14085/5084 ((R)(\text{int}) = 0.0574)</td>
<td>8635/3752 ((R)(\text{int}) = 0.0240)</td>
<td>16836/7873 ((R)(\text{int}) = 0.0516)</td>
</tr>
<tr>
<td>no. of data/restraints/params</td>
<td>5084/1/292</td>
<td>3752/0/226</td>
<td>7873/0/437</td>
</tr>
<tr>
<td>(R_1, wR_2) (I > 2(\sigma(I)))^a</td>
<td>0.0778, 0.1981</td>
<td>0.0336, 0.0821</td>
<td>0.0537, 0.1284</td>
</tr>
<tr>
<td>(R_1, wR_2) (all data)^a</td>
<td>0.1311, 0.2391</td>
<td>0.0415, 0.0873</td>
<td>0.0761, 0.1406</td>
</tr>
<tr>
<td>GOF</td>
<td>1.047</td>
<td>1.050</td>
<td>1.056</td>
</tr>
<tr>
<td>(\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}) (e Å(^{-3}))</td>
<td>0.42/0.41</td>
<td>0.30/-0.34</td>
<td>2.08/-1.07</td>
</tr>
</tbody>
</table>

^a R1 = \frac{\sum||F_o|| - |F_c||}{\sum|F_o|}; \quad wR2 = \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2}^{0.5}.

29
<table>
<thead>
<tr>
<th></th>
<th>$P2_1/c$</th>
<th>$P-1$</th>
<th>$P-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.5933(3)</td>
<td>13.3244(4)</td>
<td>11.5440(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.7459(4)</td>
<td>15.4366(4)</td>
<td>12.9028(13)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>25.1218(15)</td>
<td>20.4811(6)</td>
<td>13.2418(14)</td>
</tr>
<tr>
<td>a (deg)</td>
<td>90</td>
<td>87.426(2)</td>
<td>116.569(10)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>93.177(3)</td>
<td>88.905(2)</td>
<td>91.069(6)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>66.105(3)</td>
<td>99.752(6)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>4183.9(3)</td>
<td>3847.69(19)</td>
<td>1728.6(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ρ_{calcd} (Mg m$^{-3}$)</td>
<td>1.394</td>
<td>1.443</td>
<td>1.5044</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>0.649</td>
<td>0.702</td>
<td>0.775</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>1808.0</td>
<td>1712.0</td>
<td>799.1</td>
</tr>
<tr>
<td>cryst size (mm)</td>
<td>0.42 x 0.32 x 0.24</td>
<td>0.5 x 0.4 x 0.25</td>
<td>0.4 x 0.35 x 0.3</td>
</tr>
<tr>
<td>θ range (deg)</td>
<td>7.12 – 58.38</td>
<td>7.16 – 58.42</td>
<td>7.2 – 58.26</td>
</tr>
<tr>
<td>no. of collected/unique rflns</td>
<td>27806/9765 (R(int) = 0.0350)</td>
<td>40083/17709 (R(int) = 0.0417)</td>
<td>14537/7848 (R(int) = 0.0733)</td>
</tr>
<tr>
<td>no. of data/restraints/ params</td>
<td>9765/0/502</td>
<td>17709/0/947</td>
<td>7848/0/434</td>
</tr>
<tr>
<td>$R1$, $wR2$ ($I > 2\sigma(I)$)</td>
<td>0.0341, 0.0653</td>
<td>0.0674, 0.1620</td>
<td>0.0793, 0.1828</td>
</tr>
<tr>
<td>$R1$, $wR2$ (all data)a</td>
<td>0.0518, 0.0702</td>
<td>0.0884, 0.1718</td>
<td>0.1507, 0.2298</td>
</tr>
<tr>
<td>GOF</td>
<td>1.052</td>
<td>1.173</td>
<td>1.027</td>
</tr>
<tr>
<td>$\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}$ (e Å$^{-3}$)</td>
<td>0.51/−0.56</td>
<td>0.51/−0.56</td>
<td>2.60/−1.54</td>
</tr>
</tbody>
</table>

$^a R1 = \Sigma||F_o|-|F_c||/\Sigma|F_o|; wR2 = [\Sigma w(F_o^2−F_c^2)^2/\Sigma w(F_o^2)^2]^{0.5}$.

References

Figure S3. 1H and 31P NMR spectrum of [Pd(HL1)(PPh$_3$)Cl$_2$] (I) in DMSO-d_6.
Figure S4. 1H and 31P NMR spectrum of [PdHL2(PPh3)Cl2] (II) in DMSO-d_6.
Figure S5. 1H and 31P NMR spectrum of [Pd(L1)(PPh$_3$)Cl] (III) in CDCl$_3$.
Figure S6. 1H and 31P NMR spectrum of [Pd(L2)(PPh$_3$)Cl] (IV) in CDCl$_3$.
Figure S7. 1H and 31P NMR spectrum of [Pd(L3)(PPh$_3$)$_2$Cl$_2$] (V) in DMSO-d_6.
Figure S8. 1H and 31P NMR spectrum of [Pd(L4)(PPh$_3$)$_2$Cl$_2$] (VI) in DMSO-d_6.
Figure S9. 1H and 13C NMR spectrum of 3’,5’-dichloro-4-hydroxy-[1,1’-biphenyl]-3-carbaldehyde in CDCl$_3$.
Figure S10. 1H and 13C NMR spectrum of 2-hydroxy-5-(thiophen-3-yl)benzaldehyde in CDCl$_3$.
Figure S11. 1H and 13C NMR spectrum of 4'-ethyl-3,5-dimethyl-1,1'-biphenyl in CDCl$_3$.
Figure S12. 1H and 13C NMR spectrum of 2-(4-chlorobenzyl)-3-phenylacrylonitrile (7a) in CDCl$_3$.
Figure S13. 1H and 13C NMR spectrum of 2-(4-methoxybenzyl)-3-phenylacrylonitrile (7b) in CDCl$_3$.
Figure S14. 1H and 13C NMR spectrum of 2-(dibenzo[b,d]furan-4-ylmethyl)-3-phenylacrylonitrile (7c) in CDCl$_3$.
Figure S15. ES-MS spectrum showing isotopic distribution pattern for [M –Cl]⁺ of C₄₁H₃₉Cl₂N₄Pd (I)

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Dipp-Pd-salt</th>
<th>Position</th>
<th>Instrument Name</th>
<th>Q-TOF</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Acquired Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>-1</td>
<td>AQ Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Filename</td>
<td>Dipp-Pd-salt.d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S16. ES-MS spectrum showing isotopic distribution pattern for [M –2Cl –H]⁺ of C₄₁H₃₉Cl₂N₄Pd (I)

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Dipp-Pd-Salt</th>
<th>Position</th>
<th>Instrument Name</th>
<th>Q-TOF</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Acquired Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>-1</td>
<td>AQ Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Filename</td>
<td>Dipp-Pd-Salt.d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S17. ES-MS spectrum showing isotopic distribution pattern for [M –Cl]$^+$ of C$_{38}$H$_{33}$Cl$_2$N$_4$PPd (II)

Figure S18. ES-MS spectrum showing isotopic distribution pattern for [M –2Cl –H]$^+$ of C$_{38}$H$_{33}$Cl$_2$N$_4$PPd (II)
Figure S19. ES-MS spectrum showing isotopic distribution pattern for [M –Cl]$^+$ of $C_{37}H_{31}Cl_2N_4Pd$ (V)

Figure S20. ES-MS spectrum showing isotopic distribution pattern for [M –2Cl –H]$^+$ of $C_{37}H_{31}Cl_2N_4Pd$ (V)
Figure S21. ES-MS spectrum showing isotopic distribution pattern for \([M – Cl]^+\) of C_{33}H_{29}Cl_{2}N_{4}PPd (VI)

Figure S22. ES-MS spectrum showing isotopic distribution pattern for \([M – 2Cl – H]^+\) of C_{33}H_{29}Cl_{2}N_{4}PPd (VI)
Figure S23. ES-MS spectrum showing isotopic distribution pattern for [M –Cl]$^+$ of $C_{41}H_{38}ClN_4P$ (III)

Figure S24. ES-MS spectrum showing isotopic distribution pattern for [M –Cl]$^+$ of $C_{38}H_{32}ClN_4P$ (IV)