Supporting Information

β-Pyridylenolate Zinc Catalysts for the Ring-Opening Homo- and Copolymerization of ε-Caprolactone and Lactides

Jianliang Bai,† Xia Xiao,† Yue Zhang,† Jianbin Chao,‡ Xia Chen*†

†School of Chemistry and Chemical Engineering and ‡Scientific Instrument Center,
Shanxi University, Taiyuan 030006, China
Content

Table S1. Selected bond lengths [Å], angles [°] for 1, 3, 4, 7, 9 and 11 ... 1

Table S2. Crystallographic Data for Complexes 1-4, 6 .. 2

Table S3. Crystallographic Data for Complexes 7-11 .. 3

Figure S1. X-ray structure of complex 3 ... 4

Figure S2. X-ray structure of complex 4 .. 4

Figure S3. X-ray structure of complex 7 .. 5

Figure S4. X-ray structure of complex 9 .. 5

Figure S5. X-ray structure of complex 11 ... 6

Figure S7. Methine region spectrum of homonuclear decoupled ¹H NMR spectrum (P_r=0.54) 7

Figure S8. Methine region spectrum of homonuclear decoupled ¹H NMR spectrum (P_r=0.51) 7

Figure S9. Methine region spectrum of homonuclear decoupled ¹H NMR spectrum (P_r=0.52) 8

Figure S10. Methine region spectrum of homonuclear decoupled ¹H NMR spectrum (P_r=0.51) 8

Figure S11. ¹H NMR spectrum of PLLA-b-PCL copolymer by complex 10 .. 9

Figure S12. ¹³C HNR spectrum of PCL-b-PLLA copolymer by complex 10 ... 9

Figure S13. DSC analysis of PLLA-b-PCL copolymer prepared by complex 10 10

Figure S15. Spectra composition at different molar ratios in the initial feed ... 11

Figure S16. ¹H NMR spectrum of PCL-ran-PDLLA by complex 10 ... 11

Figure S17. ¹³C NMR spectrum of the PCL-ran-PDLA by complex 10 ... 12
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>9</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>lengths [Å]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1-O1</td>
<td>2.0100(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1-O2</td>
<td>2.0886(13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1-C4</td>
<td>1.962(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1-N1</td>
<td>2.0561(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-O1</td>
<td>1.340(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>angles [°]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-O1-Za1</td>
<td>117.63(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-O1-Za1</td>
<td>123.76(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4-Zn1-O1</td>
<td>125.75(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4-Zn1-O2</td>
<td>123.09(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4-Zn1-N1</td>
<td>121.24(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Za1-N1</td>
<td>90.94(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2-Za1-N1</td>
<td>102.88(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1-O1-Za1</td>
<td>96.67(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Crystallographic Data for Complexes 1-4, 6

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${26}$H${38}$N$_2$O$_2$Zn$_2$</td>
<td>C${30}$H${30}$N$_2$O$_2$Zn$_2$</td>
<td>C${32}$H${34}$N$_2$O$_2$Zn$_2$</td>
<td>C${32}$H${28}$F$_6$N$_2$O$_2$Zn$_2$</td>
<td>C${32}$H${28}$F$_6$N$_2$O$_2$Zn$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>541.32</td>
<td>581.30</td>
<td>609.35</td>
<td>609.35</td>
<td>717.30</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1/n$</td>
<td>P-1</td>
<td>$Pbca$</td>
<td>P-1</td>
<td>$P2_1/n$</td>
</tr>
<tr>
<td>Colour of crystal</td>
<td>colourless</td>
<td>yellow</td>
<td>colourless</td>
<td>colourless</td>
<td>colourless</td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.3802(7)</td>
<td>13.2221(7)</td>
<td>15.0260(8)</td>
<td>10.0405(6)</td>
<td>10.0405(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.2221(7)</td>
<td>11.6047(6)</td>
<td>13.8778(8)</td>
<td>8.6494(10)</td>
<td>8.6494(10)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.3802(7)</td>
<td>11.6047(6)</td>
<td>23.2550(9)</td>
<td>10.1944(13)</td>
<td>10.1944(13)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>93.222(2)</td>
<td>90</td>
<td>109.661(4)</td>
<td>109.661(4)</td>
</tr>
<tr>
<td>β (°)</td>
<td>108.765(2)</td>
<td>105.4910(10)</td>
<td>105.4910(10)</td>
<td>108.913(3)</td>
<td>108.913(3)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>105.4910(10)</td>
<td>105.4910(10)</td>
<td>108.913(3)</td>
<td>108.913(3)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>2705.1(2)</td>
<td>1321.24(13)</td>
<td>2819.91(18)</td>
<td>697.30(15)</td>
<td>697.30(15)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>200(2)</td>
<td>200(2)</td>
<td>200(2)</td>
<td>200(2)</td>
<td>200(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D (gcm$^{-3}$)</td>
<td>1.329</td>
<td>1.461</td>
<td>1.435</td>
<td>1.451</td>
<td>1.556</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>1.796</td>
<td>1.845</td>
<td>1.732</td>
<td>1.752</td>
<td>1.636</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>26054</td>
<td>13059</td>
<td>26571</td>
<td>10052</td>
<td>14700</td>
</tr>
<tr>
<td>Number of parameters</td>
<td>297</td>
<td>327</td>
<td>327</td>
<td>316</td>
<td>201</td>
</tr>
<tr>
<td>F(000)</td>
<td>1136</td>
<td>600</td>
<td>1264</td>
<td>316</td>
<td>728</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.013</td>
<td>1.060</td>
<td>1.048</td>
<td>1.047</td>
<td>1.027</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>$R_1 = 0.0304$</td>
<td>$R_1 = 0.0290$</td>
<td>$R_1 = 0.0270$</td>
<td>$R_1 = 0.0278$</td>
<td>$R_1 = 0.0391$</td>
</tr>
<tr>
<td>wR_2</td>
<td>0.0742</td>
<td>0.0708</td>
<td>0.0639</td>
<td>0.0633</td>
<td>0.1000</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0397$</td>
<td>$R_1 = 0.0370$</td>
<td>$R_1 = 0.0363$</td>
<td>$R_1 = 0.0340$</td>
<td>$R_1 = 0.0485$</td>
</tr>
<tr>
<td>wR_2</td>
<td>0.0801</td>
<td>0.0744</td>
<td>0.0678</td>
<td>0.0633</td>
<td>0.1050</td>
</tr>
</tbody>
</table>
Table S3. Crystallographic Data for Complexes 7-11

<table>
<thead>
<tr>
<th>Compound</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₃₂H₃₄N₂O₂Zn₂</td>
<td>C₃₄H₳₈N₂O₂Zn₂</td>
<td>C₃₂H₳₄N₂O₂Zn₂</td>
<td>C₃₄H₳₈N₂O₂Zn₂</td>
<td>C₃₄H₳₂F₆N₂O₂Zn₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>609.35</td>
<td>637.40</td>
<td>669.40</td>
<td>745.35</td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>P1</td>
<td>P-1</td>
<td>C2/c</td>
</tr>
<tr>
<td>Colour of crystal</td>
<td>colourless</td>
<td>colourless</td>
<td>colourless</td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>a(Å)</td>
<td>8.678(17)</td>
<td>8.387(17)</td>
<td>8.3149(5)</td>
<td>8.489(9)</td>
<td>26.5338(10)</td>
</tr>
<tr>
<td>b(Å)</td>
<td>8.5619(17)</td>
<td>18.253(4)</td>
<td>9.3219(6)</td>
<td>9.3386(11)</td>
<td>8.6635(3)</td>
</tr>
<tr>
<td>c(Å)</td>
<td>18.781(4)</td>
<td>10.316(2)</td>
<td>10.6244(7)</td>
<td>10.7644(13)</td>
<td>16.4956</td>
</tr>
<tr>
<td>α(°)</td>
<td>90</td>
<td>90</td>
<td>82.944(2)</td>
<td>77.632(3)</td>
<td></td>
</tr>
<tr>
<td>β(°)</td>
<td>90.38(3)</td>
<td>101.63(3)</td>
<td>9.3219(6)</td>
<td>9.3386(11)</td>
<td></td>
</tr>
<tr>
<td>γ(°)</td>
<td>90</td>
<td>90</td>
<td>79.457(2)</td>
<td>87.149(3)</td>
<td>90</td>
</tr>
<tr>
<td>V(Å³)</td>
<td>1395.0(5)</td>
<td>1546.9(6)</td>
<td>1546.9(6)</td>
<td>798.2b(16)</td>
<td>3791.7b(2)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>273(2)</td>
<td>293(2)</td>
<td>200(2)</td>
<td>200(2)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D(gcm⁻³)</td>
<td>1.451</td>
<td>1.368</td>
<td>1.397</td>
<td>1.392</td>
<td>1.306</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>1.751</td>
<td>1.582</td>
<td>1.616</td>
<td>1.541</td>
<td>1.323</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9259</td>
<td>10881</td>
<td>7573</td>
<td>798.2b(16)</td>
<td>17698</td>
</tr>
<tr>
<td>Number of parameters</td>
<td>174</td>
<td>184</td>
<td>196</td>
<td>193</td>
<td>210</td>
</tr>
<tr>
<td>F(000)</td>
<td>632</td>
<td>664</td>
<td>332</td>
<td>348</td>
<td>1520</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.026</td>
<td>1.001</td>
<td>1.062</td>
<td>1.022</td>
<td>1.056</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>R₁ = 0.0374</td>
<td>R₁ = 0.0582</td>
<td>R₁ = 0.0256</td>
<td>R₁ = 0.0539</td>
<td>R₁ = 0.0289</td>
</tr>
<tr>
<td>wR₂</td>
<td>wR₂ = 0.1288</td>
<td>wR₂ = 0.2623</td>
<td>wR₂ = 0.0652</td>
<td>wR₂ = 0.1172</td>
<td>wR₂ = 0.1061</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>R₁ = 0.0436</td>
<td>R₁ = 0.0633</td>
<td>R₁ = 0.0302</td>
<td>R₁ = 0.0975</td>
<td>R₁ = 0.0330</td>
</tr>
<tr>
<td>wR₂</td>
<td>wR₂ = 0.1382</td>
<td>wR₂ = 0.2623</td>
<td>wR₂ = 0.0676</td>
<td>wR₂ = 0.1342</td>
<td>wR₂ = 0.1101</td>
</tr>
</tbody>
</table>
Figure S1. X-ray structure of complex 3 with thermal ellipsoids represented at the 20% probability level. Hydrogen atoms are omitted for clarity.

Figure S2. X-ray structure of complex 4 with thermal ellipsoids represented at the 20% probability level. Hydrogen atoms are omitted for clarity.
Figure S3. X-ray structure of complex 7 with thermal ellipsoids represented at the 20% probability level. Hydrogen atoms are omitted for clarity.

Figure S4. X-ray structure of complex 9 with thermal ellipsoids represented at the 20% probability level. Hydrogen atoms are omitted for clarity.
Figure S5. X-ray structure of complex 11 with thermal ellipsoids represented at the 20% probability level. Hydrogen atoms as well as solvent molecules omitted are omitted for clarity.

Figure S6. 1H NMR spectrum of PCL-40 initiated by 10/BnOH in the ratio of $[^\varepsilon-\text{CL}]_0 : [\text{Zn}]_0 : [\text{BnOH}]_0 = 40 : 1 : 1$ in toluene at 35 °C for 20 min (CDCl$_3$, 25 °C, 600 MHz).
Figure S7. Methine region spectrum of homonuclear decoupled 1H NMR spectrum (CDCl$_3$, 25 ºC, 600 MHz, $P_r=0.54$, Table 2, entry 1)

Figure S8. Methine region spectrum of homonuclear decoupled 1H NMR spectrum (CDCl$_3$, 25 ºC, 600 MHz, $P_r=0.51$, Table 2, entry 2)
Figure S9. Methine region spectrum of homonuclear decoupled 1H NMR spectrum (CDCl$_3$, 25 °C, 600 MHz, $P_r=0.52$, Table 2, entry 6)

Figure S10. Methine region spectrum of homonuclear decoupled 1H NMR spectrum (CDCl$_3$, 25 °C, 600 MHz, $P_r=0.51$, Table 2, entry 10)
Figure S11. 1H NMR spectrum of PLLA-b-PCL copolymer by complex 10 (CDCl$_3$, 25 °C, 600 MHz)

Figure S12. 13C HNR spectrum of PCL-b-PLLA copolymer by complex 10 (CDCl$_3$, 25 °C, 150 MHz)
Figure S13. DSC analysis of PLLA-b-PCL copolymer prepared by complex 10.

Figure S14. 1H NMR spectrum of PCL-ran-PLLA prepared by complex 10 (CDCl$_3$, 25 °C, 600MHz).
Figure S15. Spectra composition at different molar ratios in the initial feed (Table 5, CDCl₃, 25 ºC, 600 MHz).

Figure S16. ¹H NMR spectrum of PCL-ran-PDLLA by complex 10 (CDCl₃, 25 ºC, 600 MHz).
Figure S17. 13C NMR spectrum of the PCL-ran-PDLA by complex 10 (CDCl$_3$, 25 °C, 150 MHz).