Cyclometalated Iridium(III) N-Heterocyclic Carbene Complexes as Potential Mitochondrial Anticancer and Photodynamic Agents

Yi Li, Bing Liu, Xin-Ran Lu, Meng-Feng Li, Liang-Nian Ji and Zong-Wan Mao

a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China. E-mail: cesmzw@mail.sysu.edu.cn.

b Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China. E-mail: limf@mail.sysu.edu.cn

Table of Contents

Table S1 The lipophilicity and cellular uptake efficiency of complexes Ir1-Ir4

Table S2 IC$_{50}$ values of the tested complexes towards different cell lines

Figure S1 UV/Vis spectra and normalized emission spectra of Ir1-Ir4

Figure S2 Confocal images of A549 cells with Ir1 under different conditions

Figure S3 Colocalization images of Ir1–Ir4 with lysosome dye

Figure S4 Impact of complexes Ir1-Ir4 on MMP

Figure S5 Activation of caspases-3/7 by Ir(III) treatment

Figure S6 ESI-MS spectrum of complexes Ir1

Figure S7 ESI-MS spectrum of complexes Ir2

Figure S8 ESI-MS spectrum of complexes Ir3

Figure S9 ESI-MS spectrum of complexes Ir4

Figure S10 1H NMR spectrum of complexes Ir1

Figure S11 1H NMR spectrum of complexes Ir2

Figure S12 1H NMR spectrum of complexes Ir3

Figure S13 1H NMR spectrum of complexes Ir4
Table S1 The lipophilicity and cellular uptake efficiency of complexes Ir1-Ir4.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Lipophilicity (log $P_{o/w}$)</th>
<th>Amount of iridium (nmol per cell)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir1</td>
<td>0.94</td>
<td>0.63 ± 0.084</td>
</tr>
<tr>
<td>Ir2</td>
<td>0.77</td>
<td>0.49 ± 0.054</td>
</tr>
<tr>
<td>Ir3</td>
<td>1.14</td>
<td>0.82 ± 0.13</td>
</tr>
<tr>
<td>Ir4</td>
<td>0.82</td>
<td>0.56 ± 0.066</td>
</tr>
</tbody>
</table>

aData are presented as means ± standard deviation obtained in at least three independent experiments.

Table S2 IC$_{50}$ (µM) values of the tested complexes towards HeLa, U87 and LO2 cell lines at dark and 450 nm.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HeLa Darka</th>
<th>Lightb</th>
<th>PIc</th>
<th>U87 Darka</th>
<th>Lightb</th>
<th>PIc</th>
<th>LO2 Darka</th>
<th>Lightb</th>
<th>PIc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir1</td>
<td>1.3 ± 0.1</td>
<td>0.069 ± 0.013</td>
<td>19</td>
<td>1.6 ± 0.3</td>
<td>0.029 ± 0.008</td>
<td>55</td>
<td>1.2 ± 0.1</td>
<td>0.10 ± 0.03</td>
<td>12</td>
</tr>
<tr>
<td>Ir2</td>
<td>1.0 ± 0.1</td>
<td>0.26 ± 0.06</td>
<td>4</td>
<td>1.8 ± 0.3</td>
<td>0.046 ± 0.01</td>
<td>39</td>
<td>2.0 ± 0.3</td>
<td>0.81 ± 0.05</td>
<td>2.5</td>
</tr>
<tr>
<td>Ir3</td>
<td>1.6 ± 0.4</td>
<td>0.11 ± 0.04</td>
<td>15</td>
<td>1.4 ± 0.2</td>
<td>0.069 ± 0.015</td>
<td>20</td>
<td>1.1 ± 0.1</td>
<td>0.17 ± 0.07</td>
<td>6.5</td>
</tr>
<tr>
<td>Ir4</td>
<td>1.8 ± 0.2</td>
<td>0.11 ± 0.06</td>
<td>4</td>
<td>1.6 ± 0.2</td>
<td>0.040 ± 0.009</td>
<td>40</td>
<td>2.1 ± 0.3</td>
<td>0.50 ± 0.04</td>
<td>4.2</td>
</tr>
<tr>
<td>cisplatin</td>
<td>14.1 ± 1.1</td>
<td>13.0 ± 1.2</td>
<td>1.1</td>
<td>33.4 ± 2.3</td>
<td>33.1 ± 2.6</td>
<td>1.0</td>
<td>11.5 ± 0.5</td>
<td>10.9 ± 0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

aIC$_{50}$ values are drug concentrations necessary for 50% inhibition of cell viability. Data are presented as means ± standard deviation obtained in at least three independent experiments. Cells are treated with complexes for 48 h.

bPhototoxicity index is the ratio of the IC$_{50}$ value in dark to that obtained upon light irradiation. Cells were treated with the compounds for 12 h and then exposed to 450 nm LED light for 10 min.

cPI (Phototoxicity index) is the ratio of the IC$_{50}$ value in the dark to that obtained upon light irradiation.
Fig. S1 A) UV/Vis spectra of **Ir1-Ir4** (20 μM) in CH₃CN at 298 K. B) UV/Vis spectra of **Ir1-Ir4** (20 μM) in CH₂Cl₂ at 298 K. C) Normalized emission spectra of **Ir1-Ir4** (20 μM) in CH₃CN at 298 K (λₑₓ = 405 nm). D) Normalized emission spectra of **Ir1-Ir4** (20 μM) in CH₂Cl₂ at 298 K (λₑₓ = 405 nm).
Fig. S2 Confocal images of A549 cells after incubation with Ir1 (10 μM) under different conditions. (A) Cells were incubated with Ir1 (10 μM) at 37 °C for 10 min. (B) Cells were incubated with Ir1 (10 μM) at 4 °C for 10 min. (C) Cells were pre-incubated with CCCP (10 μM) for 1 h at 37 °C and then incubated with Ir1 (10 μM) at 37 °C for 10 min. (D) Cells were pre-incubated with chloroquine (50 μM) for 1 h at 37 °C and then incubated with Ir1 (10 μM) at 37 °C for 10 min. Complex 7 was excited at 405 nm and emission was collected at 600 ± 20 nm. Scale bar: 10 μm.
Fig. S3 Determination of intercellular localization of complexes Ir1-Ir4 by confocal microscopy. A549 cells were incubated with LTDR (100 nM) for 20 min and then co-incubated with Ir1-Ir4 (10 μM) for another 10 min at 37 °C. The Ir(III) complexes were excited at 405 nm and the emission was collected at 600 ± 20 nm. LTDR was excited at 633 nm and the emission was collected at 660 ± 20 nm. Scale bar: 10 μm.
Fig. S4 Impact of complexes Ir1-Ir4 on MMP. The fluorescent intensity ration of A549 cells treated with Ir1-Ir4 at indicated concentrations for 6 h. Data shown are mean values ± standard deviations from three independent experiments. (*) P < 0.01, (**) P < 0.005, compared with the vehicle-treated cells.

Fig. S5 Activation of caspases-3/7 by Ir(III) treatment. A549 cells were exposed to cisplatin, Ir1 and Ir2 at the indicated concentrations for 12 h. Data shown are mean values ± standard deviations from three independent experiments. (**) P < 0.005, compared with the vehicle-treated cells.
Figure S6 ESI-MS spectrum of complexes Ir1. A) Ion isotopes spectrum of complexes Ir1. B) Ion isotopes spectrum of computer simulation using formula IrC₉H₃₂N₆, corresponding to [Ir1-Cl]⁺.

Figure S7 ESI-MS spectrum of complexes Ir2. A) Ion isotopes spectrum of complexes Ir2. B) Ion isotopes spectrum of computer simulation using formula IrC₃₅H₂₈N₆S₂, corresponding to [Ir2-Cl]⁺.
Figure S8 ESI-MS spectrum of complexes Ir3. A) Ion isotopes spectrum of complexes Ir3. B) Ion isotopes spectrum of computer simulation using formula IrC45H44N6, corresponding to [Ir3-Cl]^+.

Figure S9 ESI-MS spectrum of complexes Ir4. A) Ion isotopes spectrum of complexes Ir4. B) Ion isotopes spectrum of computer simulation using formula IrC41H40N6S2, corresponding to [Ir4-Cl]^+.
Figure S10 1H NMR spectrum of complexes Ir1.

Figure S11 1H NMR spectrum of complexes Ir2.
Figure S12 1H NMR spectrum of complexes Ir3.

Figure S13 1H NMR spectrum of complexes Ir4.