Electronic Supporting Information

A metalloporphyrin-based porous organic polymer as efficient catalyst for the catalytic oxidation of olefins and arylalkanes

Zheng-Dong Ding, Wei Zhu, Tao Li, Rui Shen, Yunxing Li, Zaijun Li, Xuehong Ren, and Zhi-Guo Gu*

a Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
b The Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China

E-mail: zhiguogu@jiangnan.edu.cn
Fig. S1 1H NMR of 5, 10, 15, 20-Tetrakis(4-aminobiphenyl)porphyrin (TBPP).

Fig. S2 13C NMR of 5, 10, 15, 20-Tetrakis(4-aminobiphenyl)porphyrin (TBPP).
Fig. S3 1H NMR of 1, 3, 5-Trimorphylloroglucinol (TP) in CDCl$_3$.

Fig. S4 13C NMR of 1, 3, 5-Trimorphylloroglucinol (TP) in CDCl$_3$. Aldehyde carbonyl (C=O) carbon resonate at =187.3ppm.
Fig. S5 FT-IR spectra of TBPP.

Fig. S6 UV-Vis spectra of TBPP and Mn-TBPP in the solution of DMF.
Fig. S7 FI-IR spectra of PPOP-1.

Fig. S8 FI-IR spectra of Mn-TBPP and Mn-PPOP-1.
Fig. S9 XRD patterns of (a) PPOP-1 and (b) Mn-PPOP-1.

Fig. S10 TGA data of PPOP-1 and Mn-PPOP-1 under N₂ atmosphere.

Fig. S11 XPS survey spectra of PPOP-1.
Fig. S12 Pore size distribution of (a) PPOP-1, and (b) Mn-PPOP-1.

Fig. S13 Yield of catalytic cycles for the epoxidation of styrene by Mn-PPOP-1.
Fig. S14 SEM images of Mn-PPOP-1 after 5rd cycle.

Fig. S15 TEM images of Mn-PPOP-1 after 5rd cycle.

Fig. S16 N\textsubscript{2} adsorption/desorption isotherms of Mn-PPOP-1 after 5rd cycle.
Fig. S17 EDS mapping of Mn-PPOP-1.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Catalyst</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Mn-TBPP</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Mn-TBPP</td>
<td>29<sup>c</sup></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>MnCl₂</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>PPOP-1</td>
<td>Trace</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Blank</td>
<td>Trace</td>
</tr>
</tbody>
</table>

^aCatalyst (0.005 mmol), Olefins (0.1 mmol) and PhIO (0.15 mmol) in 1ml CH₃CN were stirred at room temperature for 12 h.; ^b Yield [%] was determined by GC-MS using an SE-54 column.; ^cThe third cycle;