Electronic Support Information

Cd(II)-based MOF as a photosensitive Schottky diode: experimental and theoretical studies

Shibashis Halder,^a Arka Dey,^b Aradhita Bhattacharjee,^a Joaquín Ortega-Castro,^c Antonio Frontera,^{*c} Partha Pratim Ray,^{*b} and Partha Roy^{*a}

^a Department of Chemistry, Jadavpur University, Kolkata, 700 032, India

^b Department of Physics, Jadavpur University, Kolkata, 700 032, India

^c Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122

Palma de Mallorca, Baleares, Spain

Email: toni.frontera@uib.es (AF);

partha@physics.jdvu.ac.in (PPR) and

proy@chemistry.jdvu.ac.in (PR)

Fig. S1. Solid sate UV-vis spectrum of 1.

Fig. S2. TGA of 1.

Fig. S3. FT-IR spectra of **1** before (a) and after (b) heating the complex at 120 °C indicating the stability of the material.

Fig. S4. Powder X-ray diffraction patterns of **1** in different states. (a) Simulated from single crystal X-ray diffraction data, (b) bulk material, (c) bulk material after heating at 120 °C and (d) thin film deposited on glass surface.

To ensure that the Complex 1 type material exhibits better electrical performances after exposed under illumination of incident radiation, we performed another experiment. Here we took another compound containing same 4-bpd ligand, $\{[Cd(4-bpd)(N(CN)_2)_2]\}_n$ (complex 2) and fabricated same type of device with configuration ITO/2/Al. The I-V characteristics of that device were recorded under dark and under illumination of incident light and presented in Fig. S5 with the measured data in Table S1.

Fig. S5. Current-voltage (I-V) measurement of the ITO/Complex 2/Al sandwich structure

Condition	On/Off Ratio	Photosensitivity	Conductivity
Dark	41.28	1.75	6.05 x 10 ⁻⁵ S.m ⁻¹
Light	69.03		1.82 x 10 ⁻⁴ S.m ⁻¹

Table S1: Electrical parameters of ITO/ Complex 2/Al device

From Fig. S5 it can be seen that complex 2 shows the same kind of non-linear rectifying nature like complex 1. The measured parameters from Table S1 illustrate the enhancement in rectification ratio (on/off ratio) as well as conductivity under illumination of incident light. But comparing this obtained value of complex 2 based devices with complex 1 based device, it can be easily seen that the complex 1 based device shows better performance under same kind of experimental conditions.

Fig. S6. Some electronic bands of ground state of 1.

Fig. S7. Calculated Full Partial DOS of Cadmium atom (point lines), SCN atoms (solid lines) and 4-bpd molecule (dashed lines) of **1**.

Fig. S8. Calculated Full Partial DOS of SCN 'p' (red line) and 's' (blue line) of 1.

Fig. S9. Calculated Full Partial DOS of 4-bpd 'p' (red line) and 's' (blue line) of 1.

Fig. S10. Calculated Full Partial DOS of Cd 'd' (green line), 'p' (red line) and 's' (blue line) of 1.