Supplementary Information

Influence of Functional Groups on Ethylene Polymerization Performance of Silsesquioxane-Supported Phillips-Type Catalyst

Ryuki Baba, Ashutosh Thakur, Patchanee Chammingkwan, Minoru Terano and Toshiaki Taniike*

Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

* Corresponding Author:

Tel: +81-761-51-1630; Fax: +81-761-51-1635; E-mail: taniike@jaist.ac.jp

Contents
A. NMR spectra of modified POSS (1a-1d)
B. NMR spectra of POSS-supported chromium catalysts (2a-2d)
C. UV/vis spectra of POSS- and SiO₂-supported chromium catalysts (2a-2d, SiO₂-b-d)
D. Assignment and analytical method in NMR for polyethylene
A. NMR spectra of modified POSS (1a-1d)

\[(\text{tBu})_7\text{Si}_7\text{O}_{9}(\text{OH})_2(\text{OSiMe}_3)\] (1a)

Figure S1.1. 1H NMR spectrum of 1a in benzene-d_6 at r.t. (400 MHz).

Figure S1.2. 13C{1H} NMR spectrum of 1a in benzene-d_6 at r.t. (100 MHz).
Figure S1.3. $^{29}\text{Si}\{^1\text{H}\}$ NMR spectrum of 1a in benzene-d_6 at r.t. (79 MHz).

^{1}H NMR spectrum of 1b in benzene-d_6 at r.t. (400 MHz).
Figure S2.2. 13C{1H} NMR spectrum of 1b in benzene-d_6 at r.t. (100 MHz).

Figure S2.3. 29Si{1H} NMR spectrum of 1b in benzene-d_6 at r.t. (79 MHz).
Figure S3.1. 1H NMR spectrum of 1c in benzene-d_6 at r.t. (400 MHz).
Figure S3.2. 13C{1H} NMR spectrum of 1c in benzene-d_6 at r.t. (100 MHz).

Figure S3.3. 29Si{1H} NMR spectrum of 1c in benzene-d_6 at r.t. (79 MHz).

$^{1\text{Bu}}$Si$_3$O$_3$(OH)$_2$[OSiMe$_2$C$_6$H$_4$(PPh$_2$)$_2$] (1d)
Figure S4.1. 1H NMR spectrum of 1d in benzene-d_6 at r.t. (400 MHz).

Figure S4.2. 13C(1H) NMR spectrum of 1d in benzene-d_6 at r.t. (100 MHz).

Figure S4.3. 29Si(1H) NMR spectrum of 1d in benzene-d_6 at r.t. (79 MHz).
Figure S4.4. 31P-1H NMR spectrum of 1d in benzene-d_6 at r.t. (162 MHz).
B. NMR spectra of POSS supported chromium catalysts (2a-2d)

\[\text{[(i}{^\text{Bu}}\text{)}_7\text{Si}_7\text{O}_{11}(\text{OSiMe}_3)\text{]}\text{CrCH(SiMe}_3\text{)}_2 \] (2a)

Figure S5.1. ^{29}Si\{\text{H}\} NMR spectrum of 2a in benzene-d_6 at r.t. (79 MHz).

\[\text{[(i}{^\text{Bu}}\text{)}_7\text{Si}_7\text{O}_{11}(\text{OSiMe}_2\text{Ph})\text{]}\text{CrCH(SiMe}_3\text{)}_2 \] (2b)

Figure S6. ^{29}Si\{\text{H}\} NMR spectrum of 2b in benzene-d_6 at r.t. (79 MHz).
Figure S7. 29Si{1H} NMR spectrum of 2c in benzene-d_6 at r.t. (79 MHz).

Figure S8.1. 29Si{1H} NMR spectrum of 2d in benzene-d_6 at r.t. (79 MHz).
Figure S8.2. 31P NMR spectrum of 2d in benzene-d_6 at r.t. (162 MHz).
C. UV/vis spectra measurement

Figure S9. UV/vis (DRS) spectra of a) POSS-supported catalysts (2a-2d) and b) SiO$_2$-supported catalysts (SiO$_2$-b-d).
D. Assignment and analytical method in NMR for polyethylene

Figure S10 reports typical 13C–1H and 1H NMR spectra of the obtained PE (entries 3 and 5 in Table 1). The chemical shift was referenced to methyl carbon (1.98 ppm) and methyl proton (0.09 ppm) of hexamethyldisiloxane (HMDS) in 13C–1H and 1H NMR, respectively. The peak assignments have been done based on Refs. [1] and [2]. The fractions of methyl branches and the saturated ends were determined from 13C–1H NMR based on the following equations.

Eq. (1) \[
\text{Fraction of methyl branch (/1000C)} = \frac{I_{B1}}{I_{totalC}} \times 1000
\]

Eq. (2) \[
\text{Fraction of saturated end (/1000C)} = \frac{I_{S}}{I_{totalC}} \times 1000
\]

Eq. (3) \[
I_{B1} = (I_{1B1} + I_{brB1} + I_{aB1})/4
\]

Eq. (4) \[
I_{S} = (I_{1S} + I_{2S} + I_{3S})/3
\]

Eq. (5) \[
I_{totalC} = I_{Main~chain}
\]
The fraction of the vinyl ends were determined from 1H NMR based on the following equations.

Eq. (6) \[\text{Fraction of vinyl end (1000C)} = \frac{I_{Vi}}{I_{total}} \times 1000 \]

Eq. (7) \[I_{Vi} = \frac{(I_{1V} + I_{2V})}{3} \]

Eq. (8) \[I_{total} = \frac{I_{Main chain}}{2} \]

Figure S10.2. 1H NMR spectra of typical PE (400 MHz).
References
