Supporting Information

Chemosensor for micro to nano-molar detection of Ag$^+$ and Hg$^{2+}$ ions in pure aqueous media and its applications in cell imaging

Jitendra P. Nandrea, Samadhan R. Patila, Suban K. Sahooc, Chullikkattil P. Pradeepd, Andrei Churakove, Fabiao Yuf, Lingxin Chen*f, Carl Redshawg, Ashok A. Patila*, Umesh D. Patilb*

aDepartment of Chemistry, Z. B. Patil College, Deopur, Dhule - 424 002 (MS), India.
bDepartment of Chemistry, S.S.V.P.S’s L. K. Dr. P. R. Ghogrey Science College, Dhule-424 001 (MS), India.
cDepartment of Applied Chemistry, S. V. National Institute Technology, Surat-395007, Gujrat, India.
dSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175001, India.
eInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation.
fKey Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
gDepartment of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX (UK).
Table of Contents

Figure S-1 : FT-IR spectrum of sensor PTB-1.
Figure S-2 : 1H-NMR spectrum of sensor PTB-1
Figure S-3 : 13C-NMR spectrum of sensor PTB-1
Figure S-4 : HRMS spectrum of sensor PTB-1
Figure S-5 : Concentration dependent naked-eye study
Figure S-6 : Linear fitting curve for LOD and LOQ determination of PTB-1 for Ag$^+$
Figure S-7 : Mole ratio plot/change in absorption spectra (ΔA) as a function of concentration of Ag$^+$ ions
Figure S-8 : Mass spectrum of PTB-1 in the presence of Ag$^+$
Figure S-9 : Benesi-Hildebrand plot of $1/\Delta A$ against $1/[Ag^+]$
Figure S-10 : Job’s plot for complexation of PTB-1 with Hg$^{2+}$ ion
Figure S-11 : Mole ratio plot/change in emission spectra (ΔF) as a function of concentration of Hg$^{2+}$ ion
Figure S-12 : Mass spectrum of PTB-1 in the presence of Hg$^{2+}$
Figure S-13 : Benesi-Hildebrand plot of $1/\Delta F$ against $1/[Hg^{2+}]$
Figure S-14 : Plots of the fluorescence intensity of PTB-1 vs. the increasing concentration of Hg$^{2+}$ and Ag$^+$.
Figure S-15 : Selectivity and reversibility measurement of PTB-1 to Hg$^{2+}$ and Ag$^+$.
Figure S-16 : The DFT computed molecular structure of PTB-1 and its complexes.
Figure S-17 : Partial 1H NMR spectra of receptor PTB-1 in the presence of HgCl$_2$
Figure S-18 : Partial 1H NMR spectra of receptor PTB-1 in the presence of AgNO$_3$
Figure S-19 : FT-IR overlap spectra of PTB-1 and PTB-1+Hg$^{2+}$ complex
Figure S-20 : Photographs of PTB-1 loaded test strips with varying concentration of Ag$^+$
Figure S-21 : Fluorescence stability of PTB-1
Figure S-22 : MTT assay of HepG2 cells with different concentrations of PTB-1.
Figure S-23 : Hydrogen-bonded centrosymmetric dimers in the structure of PTB-1.
Table S-1 : Comparison of PTB-1 with previously reported sensors
Figure S-1: FT-IR spectrum of sensor PTB-1.
Figure S-2: 1H-NMR spectrum of sensor PTB-1.

Figure S-3: 13C-NMR spectrum of sensor PTB-1

Figure S-4: HRMS spectrum of sensor PTB-1.
Figure S-5: Concentration dependent naked-eye study; 2 equivalents of Ag$^+$ ions of concentrations (A) Ag$^+$ (5 x 10$^{-3}$ M); (B) Ag$^+$ (1 x 10$^{-3}$ M); (C) Ag$^+$ (5 x 10$^{-4}$ M); (D) Ag$^+$ (1 x 10$^{-4}$ M); (E) Ag$^+$ (1 x 10$^{-5}$ M) in the presence of 1 equivalent of PTB-1 (5 x 10$^{-3}$ M).

Figure S-6: Linear fitting curve for LOD and LOQ determination of PTB-1 for Ag$^+$.

Figure S-7: Mole ratio plot/change in absorption spectra (ΔA) as a function of concentration of Ag$^+$ ions.
Figure S-8: Mass spectrum of PTB-1 in the presence of Ag$^+$.

Figure S-9: Benesi-Hildebrand plot of 1/ΔA against 1/[Ag$^+$].
Figure S-10: Job’s plot for the determination of the 2:1 stoichiometry for complexation of PTB-1 with Hg$^{2+}$ ion.

Figure S-11: Mole ratio plot/change in emission spectra (ΔF) as a function of concentration of Hg$^{2+}$ ion.
Figure S-12: Mass spectrum of PTB-1 in the presence of Hg$^{2+}$.

Figure S-13: Benesi-Hildebrand plot of $1/\Delta F$ against $1/[\text{Hg}^{2+}]$.

$y = -3\times 10^{-11}x + 3\times 10^{-6}$

$R^2 = 0.9905$
Figure S14: Plots of the fluorescence intensity of PTB-1 vs. the increasing concentration of (A) Hg$^{2+}$ and (B) Ag$^+)$.

![Figure S14](image1.png)

Figure S15: Selectivity and reversibility measurement of PTB-1 to Hg$^{2+}$ and Ag$^+)$. Changes in fluorescence emission intensity of PTB-1 [2 mL, 4 x 10$^{-5}$ M, in CH$_3$OH:H$_2$O (20:80, v/v)] upon the sequential addition of (A, B) Hg$^{2+}$ and EDTA; (C, D) Ag$^+$ and EDTA at $\lambda_{ex} = 290$ nm.

![Figure S15](image2.png)
Figure S16: The DFT computed molecular structure of PTB-1 and its PTB-1.\((\text{Ag}^+)_2\) and \((\text{PTB-1})_2.\text{Hg}^{2+}\) complexes.

Figure S-17: Partial \(^1\text{H}\) NMR spectra (aromatic region) of receptor PTB-1 (a), PTB-1 in the presence of 0.25 equiv. \(\text{HgCl}_2\) (b), 0.5 equiv. \(\text{HgCl}_2\) (c) and 1.0 equiv. \(\text{HgCl}_2\) (d) taken in CDCl\(_3\).
Figure S-18: Partial 1H NMR spectra of receptor PTB-1 (a), PTB-1 in the presence of 0.5 equiv. AgNO$_3$ (b), 1.0 equiv. AgNO$_3$ (c), 1.5 equiv. AgNO$_3$ (d) and 2.0 equiv. AgNO$_3$ (e) taken in CDCl$_3$.

Figure S-19: FT-IR overlap spectra of PTB-1 (blue color) and PTB-1+Hg$^{2+}$ complex (green color).
Figure 20: Photographs of PTB-1 loaded test strips with varying concentration of Ag⁺

A = PTB-1 (1x10⁻² M) loaded test strip and [Ag⁺]: B = 1 x 10⁻⁴ M, C = 5 x 10⁻⁵ M, D = 1 x 10⁻⁵ M, E = 5 x 10⁻⁶ M, F = 1 x 10⁻⁶ M.

Figure S21: Fluorescence stability of PTB-1 [(2 mL, 4 x 10⁻⁵ M) in CH₃OH:H₂O (20:80, v/v)] upon 0 - 3 h. λₓₑₓ = 290 nm, λₑₘₑ = 420 nm. The data were shown as mean (± s.d.) (n = 7).
Figure S22: MTT assay of HepG2 cells with different concentrations of PTB-1. The data were shown as mean (± s.d.) (n = 7).

Figure S-23: Hydrogen-bonded centrosymmetric dimers in the structure of PTB-1.
Table S-1 Comparison of PTB-1 with previously reported sensors.

<table>
<thead>
<tr>
<th>Research Group</th>
<th>Selectivity for</th>
<th>Solvent for analysis</th>
<th>Detection limit</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patil, U.D. et. al.</td>
<td>Ag(^+) and Hg(^{2+})</td>
<td>Methanol:water (20:80)</td>
<td>For Ag(^+): 3.67 x 10(^{-6}) M</td>
<td>Cell Imaging, Paper Strips, Supported Silica</td>
</tr>
<tr>
<td>Fu, Y. et. al.</td>
<td>Only Ag(^+)</td>
<td>THF:water (80:20)</td>
<td>2.92 x 10(^{-7}) M and 6.5 x 10(^{-7}) M</td>
<td>--</td>
</tr>
<tr>
<td>Hatai, J. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Methanol:water (80:20)</td>
<td>1.03 x 10(^{-7}) M</td>
<td>--</td>
</tr>
<tr>
<td>Hatai, J. et. al.</td>
<td>Only Ag(^+)</td>
<td>DMSO:water (1:99)</td>
<td>1.0 x 10(^{-7}) M</td>
<td>Cell Imaging, Paper Strips</td>
</tr>
<tr>
<td>Hu, Z.Q. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Ethanol:water (11:89)</td>
<td>4.2 x 10(^{-8}) M</td>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Mahapatra, A.K. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Acetonitrile:water (20:80)</td>
<td>4.0 x 10(^{-7}) M</td>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Tang, B. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Acetonitrile</td>
<td>1.39 x 10(^{-8}) M</td>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Vedamalai, M. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Acetonitrile:water (90:10)</td>
<td>0.226 x 10(^{-6}) M</td>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Wang, Y. et. al.</td>
<td>Only Ag(^+)</td>
<td>Ethanol:water (10:90)</td>
<td>2.79 x 10(^{-7}) M</td>
<td>--</td>
</tr>
<tr>
<td>Xiang, G. et. al.</td>
<td>Only Ag(^+)</td>
<td>THF</td>
<td>5 x 10(^{-8}) M</td>
<td>--</td>
</tr>
<tr>
<td>Ye, J.H. et. al.</td>
<td>Only Ag(^+)</td>
<td>THF:water (33:66)</td>
<td>0.2 x 10(^{-6}) M</td>
<td>--</td>
</tr>
<tr>
<td>Zhang, D. et. al.</td>
<td>Only Hg(^{2+})</td>
<td>Ethanol:water (50:50)</td>
<td>0.067 x 10(^{-6}) M</td>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Zheng, H. et. al.</td>
<td>Only Ag(^+)</td>
<td>Methanol:water (20:80)</td>
<td>34 x 10(^{-9}) M</td>
<td>--</td>
</tr>
</tbody>
</table>

References