Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Strontium-Coordination Polymers based on Tetrafluorophthalic and Phthalic acids: Mechanochemical Synthesis, ab initio Structures

Determination, and Spectroscopic Characterization.

```
Abdal-Azim Al-Terkawi <sup>1, 2, 3</sup>, Gudrun Scholz<sup>* 1</sup>, Franziska Emmerling<sup>* 2</sup>, Erhard Kemnitz<sup>* 1</sup>
```

¹ Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D – 12489 Berlin, Germany.

² Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter- Str. 11, D – 12489 Berlin, Germany.

³ School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Unter den Linden 6, D – 10099 Berlin, Germany.

Supplementary Materials

Figure S1. The PXRD patterns of $[Sr(oBDC-F_4)(H_2O)_2]$ (1) obtained by milling the organic ligand $H_2oBDC-F_4$ with (1a) $Sr(OH)_2 \cdot 8H_2O$ for 1h (blue PXRD pattern), (1b) $Sr(OH)_2$ and 130 μ L H_2O for 1h (red PXRD pattern), or (1c) $Sr(OH)_2$ for 4h (green PXRD pattern). The molar ratio between organic and inorganic precursors was maintained as 1:1.

Figure S2. The PXRD patterns of $[Sr(oBDC-F_4)(H_2O)_2]$ (1), 2a, obtained by milling the organic ligand H_2oBDC with $Sr(OH)_2 \cdot 8H_2O$ for 1h (blue PXRD pattern). (2b) Product obtained after milling H_2oBDC with $Sr(OH)_2$ and 130 µL H_2O for 1h (red PXRD pattern). Product 2c obtained after milling H_2oBDC with $Sr(OH)_2$ for 4h (green PXRD pattern). The molar ratio between organic and inorganic precursors was maintained as 1:1.

Table S1. Elemental analysis results of products 1a, 1b and 1c as depicted in Figure S1, products 2a, 2b, and 2c as depicted in Figure S2, and the samples after thermal post-treatments of compounds 1 and 2 at 300 °C and 400 °C, respectively.

	1a	1b	1c	1 (300 °C)	2a	2b	2c	2 (400 °C)
C% found (calc.)	26.5 (26.7)	27.1	26.9	26.8 (29.7)	30.4 (31.4)	33.4	34.7	37.4 (38.1)
H% found (calc.)	0.95 (1.1)	0.9	0.91	0.5 (0)	3.1 (3.3)	3.1	2.6	1.5 (1.6)
F% found (calc.)	19.4 (21.1)	-	-	26.7 (23.5)	-	-	-	-

Table S2: Selected bonds, distances, and H-bonds from the crystal structures of 1 and 2.

	[Sr <i>(o</i> BDC-F ₄)(H ₂ O) ₂] (1)		[{Sr <i>(o</i> BDC)(H ₂ O) ₂ }·H ₂ O] (2)		
	Sr—01	2.426(2)	Sr—01	2.968(1)	
	Sr—01'	2.774(1)	Sr—02	2.443(1)	
Sr—O (carboxylate) (Å)	Sr—02	2.437(2)	Sr—02'	2.800(1)	
	Sr—02'	2.667(1)	Sr—03	2.603(1)	
	Sr—03	2.671(1)	Sr—O3'	2.685(1)	
	Sr—O4	2.573(1)	Sr—O4	2.550(1)	
	Sr—O1w	2.732(1)	Sr—O1w	2.628(1)	
Sr—O (water) (Å)	Sr—O2w	2.688(1)	Sr—O1w'	2.720(1)	
	Sr—O2w'	3.183(2)	Sr—O2w	2.687(1)	
H–Bonds (Å)	02w ··· 03	2.670(1)	O3w … O1	2.829(1)	
	02w … 04	2.738(1)	03w … 01w	2.913(1)	
	-	-	02w … 01	2.539(1)	
	-	-	02w … 04	2.492(1)	
C—O (carboxyl) (Å)	C8—01	1.209(2)	C1—O1	1.272	
	C8—O2	1.253(2)	C1—O2	1.256	
	C7—O3	1.250(2)	C7—O3	1.251	
	C7—O4	1.228(1)	C7—O4	1.265	
Sr—(bridging,	Sr—(01, 01')—Sr	4.229(1)	Sr—(03, 01w)—Sr	4.238(2)	
	Sr—(O2, O2')—Sr	3.992(1)	Sr—(02, 02')—Sr	4.167(2)	
chain)—Sr (Å)	Sr—(O2w, O2w') … Sr	5.080(2)	-	-	
	Interlayer distance	13.294(6)	Interlayer distance	12.612(2)	

Table S3: Selected angles from the crystal structures of 1 and 2.

0—Sr—O (°)

	[Sr <i>(o</i> BDC-F ₄)(H ₂ O) ₂] (1)	[{Sr(oBDC)(H ₂ O) ₂ }·H ₂ O]			
01—Sr—01'	69.62(5)	01—Sr—O2	45.106(2)		
01—Sr—02	49.434(4)	01—Sr—02'	110.006(4)		
01—Sr—02'	125.172(8)	01—Sr—03	136.014(5)		
01—Sr—03	89.429(6)	01—Sr—03'	125.254(5)		
01—Sr—04	81.212(5)	01—Sr—04	105.091(4)		
01—Sr—01w	144.329(7)	01—Sr—01w	67.352(3)		
01—Sr—02w	124.110(7)	01—Sr—01w'	78.270(3)		
01—Sr…O2w'	65.003(4)	01—Sr—02w	53.060(2)		
01'—Sr—02	116.526(8)	02—Sr—02′	74.960(3)		
01'—Sr—02'	162.084(1)	02—Sr—03	146.892(5)		
01'—Sr—03	88.781(6)	O2—Sr—O3′	131.647(5)		
01'—Sr—04	124.614(8)	02—Sr—04	71.198(3)		
01'—Sr—01w	81.633(6)	02'—Sr—03	113.700(5)		
01'—Sr—02w	79.834(5)	02'—Sr—03'	66.834(3)		
01'—Sr …O2w'	68.865(44)	02'—Sr—04	78.913(3)		
02—Sr—02'	76.061(5)	02'—Sr—01w	150.260(54)		
02—Sr—03	76.049(5)	02'—Sr—01w'	138.287(5)		
02—Sr—04	66.853(4)	02'—Sr—02w	79.242(4)		
02—Sr—01w	140.031(7)	O3—Sr—O3'	78.033(3)		
02—Sr—02w	146.083(7)	03—Sr—04	125.745(5)		
O2—Sr··O2w′	96.112(6)	03—Sr—01w	140.382(5)		
03—Sr—04	138.076(7)	03—Sr—01w'	75.169(3)		
03—Sr—01w	68.728(4)	03—Sr—02w	73.841(3)		
03—Sr—02w	136.446(7)	04—Sr—01w	73.684(3)		
03—Sr··O2w'	150.287(7)	04—Sr—01w'	140.186(5)		
04—Sr—01w	133.831(7)	04—Sr—02w	139.855(5)		
04—Sr—02w	79.374(5)	O1w—Sr—O1w'	71.34(3)		
O4—Sr··O2w'	56.164(4)	O1w—Sr—O2w	115.331(4) ⁶		

Table S3: Selected angles from the crystal structures of 1 and 2.

$[{Sr(oBDC)(H_2O)_2} + H_2O] (2)$

118.741(3)

$[Sr(oBDC-F_4)(H_2O)_2]$ (1)

O O $(a - a + a - a + b) (8)$	01-C8-02	127.308(2)	0102	122.670(1)
0—C—O (carboxyi) (*)	O3—C7—O4	123.910(2)	03—C7—04	123.911
	O1—Sr—O2 (chelate)	49.434(4)	O1—Sr—O2 (chelate)	45.106(2)
Sr—(bridging)—Sr (°)	Sr—O1—Sr (bridge)	110.374(6)		
	Sr—O2—Sr (bridge)	103.939(6)	Sr—O2—Sr (bridge)	105.04(4)
	Sr—C7(O3,O4)—Sr (bridge) 67.575(4)		Sr—O3—Sr (bidentate)	106.531(4)
			Sr—C7(O3,O4)—Sr (bridge)	73.375(3)

Sr-C7(O3,O4)-Sr (bridge)

Table S4. EXAFS fit parameters for the compounds 1 and 2. The root mean square error (RMSE) is 0.03 For 1 and 0.0002 for 2.

[Ca(oBDC-F ₄)(H ₂ O) ₂] (1)					[{Sr(oBDC)(H ₂ O) ₂ }·H ₂ O] (2)			
Scattering path	R _{model} (Å)	R _{fit} (Å)	R _{diff} ² (Å)		R _{model} (Å)	R _{fit} (Å)	R _{diff} ² (Å)	
Sr—01	2.426(2)	2.259	0.028	Sr—01	2.968(1)	2.976	0.000064	
Sr—01'	2.774(1)	2.601	0.030	Sr—02	2.443(1)	2.451	0.000064	
Sr—02	2.437(2)	2.259	0.032	Sr—02'	2.800(1)	2.808	0.000064	
Sr—O2'	2.667(1)	2.502	0.027	Sr—03	2.603(1)	2.623	0.0004	
Sr—03	2.671(1)	2.502	0.029	Sr—03'	2.685(1)	2.694	0.000081	
Sr—04	2.573(1)	2.400	0.030	Sr—04	2.550(1)	2.558	0.000064	
Sr—O1w	2.732(1)	2.560	0.030	Sr—O1w	2.628(1)	2.623	0.000025	
Sr—O2w	2.688(1)	2.502	0.035	Sr—01w'	2.720(1)	2.728	0.000064	
Sr—O2w'	3.183(2)	3.010	0.030	Sr—O2w	2.687(1)	2.694	0.000049	
Average (Å)	2.683	2.510			2.676	2.684		
RMSE			0.030				0.00018	
R-Factor			0.007				0.014	
Reduced chi-square (X ²)			858.893				6800.510	

Figure S3. PXRD patterns of compound **2** as-synthesized (black PXRD pattern) and the decomposed compound after thermal post-treatment at 300 °C (red PXRD pattern). The PXRD pattern of sample of **1** after decomposition is compared to the standard X-ray lines for SrF2 from the 00-001-0644 card (blue vertical lines).

Figure S4. The ATR-IR spectra of compound 1 (black spectrum) and compound 2 (blue spectrum).

Isotherm Linear Plot

20-

Adsorbed (cm³/g STP)

Quantity

12-

Figure S5. Isotherm curves of the compound **1**. Adsorption (crosses) and desorption pore volume (circles) isotherm for nitrogen at room temperature (a), at 200 °C (b), and at 250 °C (c).

Isotherm Linear Plot

0.9

10

Isotherm Linear Plot

С

Figure S5. Isotherm curves of the compound **1**. Adsorption (crosses) and desorption pore volume (circles) isotherm for nitrogen at room temperature (a), at 200 °C (b), and at 250 °C (c).

Figure S6. Isotherm curves of the compound **2**. Adsorption (crosses) and desorption pore volume (circles) isotherm for nitrogen at room temperature (a), at 240 °C (b), 290 °C (c), and at 390 °C (d)

Isotherm Linear Plot

Isotherm Linear Plot

Figure S6. Isotherm curves of the compound **2**. Adsorption (crosses) and desorption pore volume (circles) isotherm for nitrogen at room temperature (a), at 240 °C (b), 290 °C (c), and at 390 °C (d)

Figure S7. SEM images for $[Sr(oBDC-F_4)(H_2O)_2]$ (1).

Figure S8. SEM images for $[{Sr(oBDC)(H_2O)_2} + H_2O]$ (2).