Supporting Information for:

Rotaxane synthesis exploiting the M(I)/M(III) redox couple

Jack Emerson-King, Richard C. Knighton, Matthew R. Gyton, and Adrian B. Chaplin*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.

Email: a.b.chaplin@warwick.ac.uk

Contents

1. NMR spectra of isolated compounds ... 2
 1.1 Rhodium [2]rotaxane $1a$.. 2
 1.2 Iridium [2]rotaxane $1b$.. 3
 1.3 [Rh(COD)(PPh$_3$)$_2$][BAR$_2^f$] $2a$... 4
 1.4 [Ir(COD)(PPh$_3$)$_2$][BAR$_2^f$] $2b$... 5
 1.5 Ammonium salt 3 .. 5
 1.6 Pseudo[2]rotaxane 3-db24c8 .. 6
 1.7 Stack plot of 1H NMR spectra of $1a$, $1b$, 3-db24c8 and 3 7
 1.8 [Rh(bipy)H$_2$(PPh$_3$)$_2$][BAR$_2^f$] $4a$[BAR$_2^f$] 7
 1.9 [Ir(bipy)H$_2$(PPh$_3$)$_2$][BAR$_2^f$] $4b$[BAR$_2^f$] .. 8
 1.10 [Rh(bipy)(COD)(PPh$_3$)][BAR$_2^f$] $5a$... 9
 1.11 [Ir(bipy)(COD)(PPh$_3$)][BAR$_2^f$] $5b$... 10
 1.12 [Rh(bipy)(COD)][BAR$_2^f$] $6a$.. 11
 1.13 [Ir(bipy)(COD)][BAR$_2^f$] $6b$.. 12
 1.14 [Rh(bipy)(PPh$_3$)$_2$][BAR$_2^f$] 7 .. 13
 1.15 [Rh(PPh$_3$)$_2$][BAR$_2^f$] 8 ... 14
 1.16 5-phthalimidomethylbipyridine ... 15
 1.17 5-aminomethylbipyridine .. 15
 1.18 Amine 10 ... 16

2. Selected in situ reaction data ... 17
 2.1 Hydrogenation of $2a$+bipy @ 50 °C ... 17
 2.2 Hydrogenation of $2b$+bipy @ RT ... 18
 2.3 Reaction between $2a$ and bipy ... 19
 2.4 Reaction between $2b$ and bipy ... 20
 2.5 Hydrogenation of $2a$.. 21
 2.6 Hydrogenation of $2b$.. 21
 2.7 Reaction between 3 and db24c8 ... 23
 2.8 Attempted hydrogenation of COD mediated by $4a$[BAR$_2^f$] 24
 2.9 Reaction between $5a$ and PPh$_3$... 24
 2.10 Hydrogenation of 7 ... 25
 2.11 Reaction between 8 and bipy ... 25

3. HR ESI-MS spectra of new compounds ... 27
1. NMR spectra of isolated compounds

1.1 Rhodium [2]rotaxane 1a

Figure S-1: 1H NMR spectrum of 1a (CD$_2$Cl$_2$, 500 MHz).

Figure S-2: 13C(1H) APT NMR spectrum of 1a (CD$_2$Cl$_2$, 126 MHz).

Figure S-3: 31P(1H) NMR spectrum of 1a (CD$_2$Cl$_2$, 202 MHz).
1.2 Iridium [2]rotaxane 1b

Figure S-4: 1H NMR spectrum of 1b (CD$_2$Cl$_2$, 500 MHz).

Figure S-5: 13C(1H) APT NMR spectrum of 1b (CD$_2$Cl$_2$, 126 MHz).

Figure S-6: 31P(1H) NMR spectrum of 1b (CD$_2$Cl$_2$, 202 MHz).
1.3 \([\text{Rh(COD)(PPh}_3)_2][\text{BAR}^7_2] \) 2a

Figure S-7: 1H NMR spectrum of 2a (CD$_2$Cl$_2$, 500 MHz).

Figure S-8: 13C(1H) APT NMR spectrum of 2a (CD$_2$Cl$_2$, 126 MHz).

Figure S-9: 31P(1H) NMR spectrum of 2a (CD$_2$Cl$_2$, 162 MHz).
1.4 \([\text{Ir(COD)(PPh}_3)_2][\text{BARF}_4]\) 2b

![Figure S-10: ^1H NMR spectrum of 2b (CD$_2$Cl$_2$, 400 MHz).](image)

1.5 Ammonium salt 3

![Figure S-12: ^1H NMR spectrum of 3 (CD$_2$Cl$_2$, 500 MHz).](image)
1.6 Pseudo[2]rotaxane 3-db24c8

Figure S-13: 13C(1H) APT NMR spectrum of 3 (CD$_2$Cl$_2$, 126 MHz).

Figure S-14: 1H NMR spectrum of 3-db24c8 (CD$_2$Cl$_2$, 500 MHz).

Figure S-15: 13C(1H) APT NMR spectrum of 3-db24c8 (CD$_2$Cl$_2$, 126 MHz).
1.7 Stack plot of 1H NMR spectra of 1a, 1b, 3-db24c8 and 3

Figure S-16: 1H NMR spectra of 1a, 1b, 3-db24c8 and 3.

1.8 $[\text{Rh(bipy)}H_2(PPh_3)_2][\text{BAR}^f_4]$ 4a[BARf_4

Figure S-17: 1H NMR spectrum of 4a[BARf_4] (CD$_2$Cl$_2$, 500 MHz).
Figure S-18: $^{13}\text{C}\{^1\text{H}\}$ APT NMR spectrum of 4a[Bar4] (CD$_2$Cl$_2$, 126 MHz).

Figure S-19: $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 4a[Bar4] (CD$_2$Cl$_2$, 162 MHz).

1.9 [Ir(bipy)H$_2$(PPh$_3$)$_2$][Bar4] 4b[Bar4]

Figure S-20: ^1H NMR spectrum of 4b[Bar4] (CD$_2$Cl$_2$, 500 MHz).
1.10 [Rh(bipy)(COD)(PPh$_3$)][BAr$_4$] 5a
Figure S-24: 13C{\text{[H]} APT NMR spectrum of 5a (CD$_2$Cl$_2$, 126 MHz).

Figure S-25: 31P{\text{[H]} NMR spectrum of 5a (CD$_2$Cl$_2$, 162 MHz).

1.11 [Ir(bipy)(COD)(PPh$_3$)][BF$_4$] $\mathbf{5b}$

Figure S-26: 1H NMR spectrum of $\mathbf{5b}$ (CD$_2$Cl$_2$, 500 MHz).
Figure S-27: $^{13}\text{C}[^1\text{H}]$ APT NMR spectrum of 5b (CD$_2$Cl$_2$, 126 MHz).

Figure S-28: $^{31}\text{P}[^1\text{H}]$ NMR spectrum of 5b (CD$_2$Cl$_2$, 162 MHz).

1.12 [Rh(bipy)(COD)][BAr$_4^2$] 6a

Figure S-29: ^1H NMR spectrum of 6a (CD$_2$Cl$_2$, 500 MHz).
Figure S-30: 13C(1H) APT NMR spectrum of 6a (CD$_2$Cl$_2$, 126 MHz).

1.13 [Ir(bipy)(COD)][BAr$_{4.3}$] 6b

Figure S-31: 1H NMR spectrum of 6b (CD$_2$Cl$_2$, 500 MHz).

Figure S-32: 13C(1H) APT NMR spectrum of 6b (CD$_2$Cl$_2$, 126 MHz).
1.14 \([\text{Rh(bipy)}(\text{PPh}_3)_2][\text{BAR}^1_4]\) \(7\)

Figure S-33: \(^1\text{H}\) NMR spectrum of \(7\) (CD\(_2\)Cl\(_2\), 500 MHz).

Figure S-34: \(^{13}\text{C}\{^1\text{H}\}\) APT NMR spectrum of \(7\) (CD\(_2\)Cl\(_2\), 126 MHz).

Figure S-35: \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum of \(7\) (CD\(_2\)Cl\(_2\), 162 MHz).
1.15 [Rh(PPh$_3$)$_2$][BAR$_4$]$_2$ 8

Figure S-36: 1H NMR spectrum of 8 (CD$_2$Cl$_2$, 500 MHz).

Figure S-37: 13C(1H) APT NMR spectrum of 8 (CD$_2$Cl$_2$, 126 MHz).

Figure S-38: 31P(1H) NMR spectrum of 8 (CD$_2$Cl$_2$, 162 MHz).
1.16 5-phthalimidomethylbipyridine

Figure S-39: 1H NMR spectrum of 5-phthalimidomethylbipyridine (CDCl$_3$, 400 MHz).

Figure S-40: 13C(1H) APT NMR spectrum of 5-phthalimidomethylbipyridine (CDCl$_3$, 101 MHz).

1.17 5-aminomethylbipyridine

Figure S-41: 1H NMR spectrum of 5-aminomethylbipyridine ((CD$_3$)$_2$SO, 400 MHz).
1.18 Amine 10

Figure S-42: 13C(1H) APT NMR spectrum of 5-aminomethylbipyridine ((CD$_3$)$_2$SO, 101 MHz).

Figure S-43: 1H NMR spectrum of 10 (CD$_2$Cl$_2$, 500 MHz).

Figure S-44: 13C(1H) APT NMR spectrum of 10 (CD$_2$Cl$_2$, 126 MHz).
2. **Selected in situ reaction data**

2.1 Hydrogenation of 2a+bipy @ 50 °C

Figure S-45: Selected 1H NMR spectra recorded during the hydrogenation of 2a+bipy (400 MHz, CD$_2$Cl$_2$).

Figure S-46: Selected 31P(1H) NMR spectra recorded during the hydrogenation of 2a+bipy (400 MHz, CD$_2$Cl$_2$).

Figure S-47: Relative concentration of species observed during the hydrogenation of 2a+bipy over 18 h, determined by integration of 1H NMR data.
2.2 Hydrogenation of 2b+bipy @ RT

Figure S-48: GC trace obtained following hydrogenation of 2a+bipy.

Figure S-49: 1H NMR spectrum obtained following hydrogenation of 2b+bipy (400 MHz, CD$_2$Cl$_2$). Signals belonging to COA and COE integrated.

Figure S-50: 31P(1H) NMR spectrum obtained following hydrogenation of 2b+bipy (162 MHz, CD$_2$Cl$_2$).

Figure S-51: GC trace obtained following hydrogenation of 2b+bipy.
2.3 Reaction between 2a and bipy

Figure S-52: Selected 1H NMR spectra recorded during the reaction between 2a with bipy (400 MHz, CD$_2$Cl$_2$).

Figure S-53: Selected 31P(1H) NMR spectra recorded during the reaction between 2a and bipy (162 MHz, CD$_2$Cl$_2$).
2.4 Reaction between 2b and bipy

Figure S-55: Selected 1H NMR spectra recorded during the reaction between 2b and bipy (400 MHz, CD$_2$Cl$_2$).

Figure S-56: Selected 31P(1H) NMR spectra recorded during the reaction between 2b and bipy (162 MHz, CD$_2$Cl$_2$).
2.5 Hydrogenation of 2a

Figure S-57: Selected 1H NMR spectra recorded during the hydrogenation of 2a (400 MHz, CD$_2$Cl$_2$).

Figure S-58: Selected 31P(1H) NMR spectra recorded during the hydrogenation of 2a (162 MHz, CD$_2$Cl$_2$).

2.6 Hydrogenation of 2b

Figure S-59: 1H NMR spectrum of in situ generated 9 at 298 K (500 MHz, CD$_2$Cl$_2$).
Figure S-60: 31P{1H} NMR spectrum of *in situ* generated 9 at 298 K (202 MHz, CD$_2$Cl$_2$).

Figure S-61: 1H NMR spectrum of *in situ* generated 9 at 185 K (500 MHz, CD$_2$Cl$_2$).

Figure S-62: 31P{1H} NMR spectrum of *in situ* generated 9 at 185 K (202 MHz, CD$_2$Cl$_2$).
2.7 Reaction between 3 and db24c8

Figure S-65: 1H NMR spectra following reaction between 3 and db24c8 (400 MHz, CD$_2$Cl$_2$).
2.8 Attempted hydrogenation of COD mediated by 4a[BArF$_4$]

Figure S-66: GC trace obtained following the reaction of 4a+COD under dihydrogen.

2.9 Reaction between 5a and PPh$_3$

Figure S-67: 1H NMR spectra demonstrating reaction between 5a and PPh$_3$ in CD$_2$Cl$_2$: 2a+bipy (400 MHz), 6a+2PPh$_3$ (500 MHz) and, for comparison, isolated 5a (500 MHz).

Figure S-68: 31P{1H} NMR spectra demonstrating the reaction between 5a and PPh$_3$ in CD$_2$Cl$_2$: from 2a+bipy (162 MHz), 6a+2PPh$_3$ (202 MHz) and, for comparison, isolated 5a (202 MHz).
2.10 Hydrogenation of 7

Figure S-69: 1H NMR spectrum obtained following hydrogenation of 7 (400 MHz, CD$_2$Cl$_2$).

2.11 Reaction between 8 and bipy

Figure S-71: 1H NMR spectrum obtained following reaction between 8 and bipy (400 MHz, CD$_2$Cl$_2$).
Figure S-72: $^{31}\text{P}^{1\text{H}}$ spectrum obtained following reaction between 8 and bipy (162 MHz, CD$_2$Cl$_2$).
3. HR ESI-MS spectra of new compounds

Figure S-73: HR ESI-MS spectrum of 1a (positive ion, 4 kV).

Figure S-74: HR ESI-MS spectrum of 1b, [M-H]⁺ (positive ion, 4 kV).
Figure S-75: HR ESI-MS spectrum of 1b, [M]$^{2+}$ (positive ion, 4 kV).

Figure S-76: HR ESI-MS spectrum of 2a (positive ion, 4 kV).
Figure S-77: HR ESI-MS spectrum of 3 (positive ion, 4 kV).
Figure S-78: HR ESI-MS spectrum of 4a (positive ion, 4 kV).
Figure S-79: HR ESI-MS spectrum of 4b (positive ion, 4 kV).

Figure S-80: HR ESI-MS spectrum of 5a (positive ion, 4 kV).
Figure S-81: HR ESI-MS spectrum of 5b (positive ion, 4 kV).

Figure S-82: HR ESI-MS spectrum of 6a (positive ion, 4 kV).
Figure S-83: HR ESI-MS spectrum of 6b (positive ion, 4 kV).

Figure S-84: HR ESI-MS spectrum of 7 (positive ion, 4 kV).
Figure S-85: HR ESI-MS spectrum of 8 (positive ion, 4 kV).
Figure S-86: HR ESI-MS spectrum of 5-phthalimidomethylbipyridine (positive ion, 4 kV).

Figure S-87: HR ESI-MS spectrum of 5-aminomethylbipyridine (positive ion, 4 kV).
Figure S-88: HR ESI-MS spectrum of 10 (positive ion, 4 kV).