Li$_3$Co$_{1.06(1)}$TeO$_6$: Synthesis, single-crystal structure and physical properties of a new tellurate compound with CoII/CoIII mixed valence and orthogonally oriented Li-ion channels

Gunter Heymann,*a Elisabeth Selb,a Michaela Kogler,b Thomas Götsch,b Eva-Maria Köck,b Simon Penner,b Martina Tribus,c and Oliver Janka,d

*Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

Rietveld refinement of Li$_3$Co$_{1.06(1)}$TeO$_6$

Rietveld refinements were done with the Diffrac$^{\text{plus}}$-TOPAS® 4.2 software package (Bruker AXS, Karlsruhe, Germany) based on the parameters derived from the single-crystal structure model. Peak shapes were modeled using modified Thompson-Cox-Hastings pseudo-Voigt profiles.1,2 A measured instrument function for reflection profiles derived from the refinement of a LaB$_6$ standard3 took into account instrument contributions. The background was fitted with Chebychev polynomials up to the 8th order. Figure 1s displays the results of the Rietveld refinement of Li$_3$Co$_{1.06(1)}$TeO$_6$.

Figure S1:

![Figure S1](image)

Figure S1. XRD pattern (Mo-K_{α} radiation) and Rietveld refinement of X-ray pure Li$_3$Co$_{1.06(1)}$TeO$_6$ ($R_{\text{exp}} = 2.41$, $R_{\text{wp}} = 11.21$, $R_p = 8.34$, and $GOF = 4.65$).
Time-/temperature-dependent impedance measurements

Figure S2 A and C show that the heating and cooling curves of Li$_3$Co$_{1.06(1)}$TeO$_6$ in air between RT and 723 K hardly differ at all. At RT, an impedance value of $2.26\cdot10^7\ \Omega$ is apparent. Upon heating to ~ 353 K the impedance starts to increase leading to a value of $8.27\cdot10^9\ \Omega$. In the temperature region between 353 and 723 K, semiconductive behavior with a decreasing impedance value upon increasing the temperature is visible. Basically, the same impedance course is visible upon re-cooling to RT with slight differences between 371 K and RT. No directly visible phase transformation processes are apparent in Figure S2 A during the heating-cooling cycle. To check for eventual phase transformations, time- and temperature-dependent EIS experiments up to 1173 K were conducted as well as shown in Figure S2 C and D. During treatment of the sample up to 1173 K, a similar impedance course is pictured: lower impedance value at RT ($1.87\cdot10^6\ \Omega$) at the beginning of the experiment, increase of between RT and 355 K ($1.55\cdot10^9\ \Omega$ at 355 K), and semiconductive behavior between 355 and 1173 K. A very similar trend is visible upon cooling with slight differences in the impedance course between 382 and 320 K. However, if a closer look is taken at the temperature region around 940 K during heating in Figure 2s B, a small bump is visible (c.f. yellow trace in Figure 1D). This bump could indicate Li-ion segregation and a change in the structure of the Li$_3$Co$_{1.06(1)}$TeO$_6$ sample. Presumably the sample releases lithium, due to an observed corrosive attack of the silica glass sample chamber. Further studies concerning this point are still pending.
Figure S2. Time- and temperature-dependent *in-situ* EIS measurements of the Li$_{3}$Co$_{1.06(1)}$TeO$_{6}$ sample between RT and 723 K (panel A and C) and between RT and 1173 K (panel B and D) treated in air. The yellow traces indicate the heating procedure and the blue traces the cooling procedure. $|Z|$: impedance modulus value.

References