(C^Npz^C)Au^{III} complexes of acyclic carbone ligands decorated with amino esters: synthesis and anticancer properties

Morwen Williams, a Adam Green, a Julio Fernandez-Cestau, a David L. Hughes, a Maria A. O’Connell, b Mark Searcey, a,b* Benoit Bertrand a* and Manfred Bochmann a*

Supporting Information

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1: Crystal Structure of compound 2.</td>
<td>S2</td>
</tr>
<tr>
<td>Figure S2: Crystal Structure of compound 3.</td>
<td>S3</td>
</tr>
<tr>
<td>Figure S3: Crystal structure of complex 5·1.5 C7H8.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S4: Crystal structure of complex 11a.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S5: Crystal structure of complex 12·C7H8</td>
<td>S7</td>
</tr>
<tr>
<td>Figure S6: ^1^H NMR spectra in deuterated DMSO/D2O mixture of a 1/1 mixture of compound 7 with GSH after different reaction times at room temperature</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S7: Numbering of the positions for NMR assignment.</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S8-S20: ^1^H NMR spectra</td>
<td>S9-S19</td>
</tr>
</tbody>
</table>
Figure S1a: Crystal structure of complex 2. Ellipsoids set at 50% probability. Selected bond distances (Å) and angles (°): Au1-N1 1.975(4), Au1-C4 2.113(4), Au1-C13 1.992(6), C13-N3 1.124(7), C4-Au1-N3 80.31(11), C4-Au1-C13 99.69(11), Au1-C13-N3 180.

Figure S1b. Different views of the crystal packing of complex 2. The packing shows the presence of dimers through the accommodation of π···π interactions between the pyrazine ring of the C\(^\text{N}^\text{pz}\)\(^\text{C}\) ligand of one molecule and one aryl ring of the neighboring molecule and viceversa. The SbF\(_6\) anions form F···H interactions with both dimerized molecules contributing to stabilize the dimer.
Figure S2a: Crystal structure of complex 3. Ellipsoids set at 50% probability. Selected bond distances (Å) and angles (°): Au1-N1 2.0396(15), Au1-C7 2.0251(18), Au1-C22 2.0957(19), Au1-C62 2.0756(19), C7-N70 1.365(2), C7-Au1-N1 176.18(7), C7-Au-C62 97.15(7), N1-Au1-C62 80.21(7), C7-Au1-C22 102.83(7), N1-Au1-C22 79.86(7), C62-Au-C22 160.01(7).
Figure S2b: Different views of the crystal packing of complex 3. Each molecule interacts with one neighboring molecule through a double 2,6-diMePhNH···N$_{pz}$ interaction (2.280 Å), and with another neighboring molecule through a double 2,6-diMePhNHCO···H(pyz) (2.528 Å) interaction. Two different intermolecular interactions are found in the rods thus formed: The molecules pack in a tail-to-tail disposition with average intermolecular distance of 3.538 Å and a displacement of 3.951 Å between Au centers to accommodate the 2,6-diMePhNH···N$_{pz}$ interactions, while the 2,6-diMePhNHCO···H(pyz) interactions produce a closer accommodation of the molecules between them (3.459 Å) with the aryl ring of the C$_{pz}$N$^+$C ligand of one molecule on top of the 5 member AuN$^+$C$_3$ metallacycle of the other, and viceversa.
Figure S3: Different views of the crystal packing of complex 5·1.5 C₇H₈. The packing shows the presence of dimers through the accommodation of two 2,6-diMePhNH···Npz interactions (2.183 Å). The dimer is stabilized by the formation of F···H interactions with the SbF₆ anions.

Figure S4a: Structure of 11a. Ellipsoids set at 50% probability. Selected bond distances (Å) and angles (°): Au-N1 2.001(4), Au-C6 2.072(5), Au-C16 2.094(5), Au-N3 2.022(4), N1-Au-C6 80.43(17), N1-Au-C16 80.69(18), C6-Au-N3 93.54(18), C16-Au-N3 105.31(18), Au-N3-C25 126.1(3).
Figure S4b: Different views of the crystal packing of compound 11a. The crystal shows the formation of rods due to the formation of H···Npz bonds. Each molecule interacts with one neighboring molecule through a double PhNH···Npz interaction (2.71 Å), and with other neighboring molecule through a double o-H (Ph ring of the aniline) ·· Npz (2.563 Å) interaction. Due to the accommodation of these two types of interactions two different intermolecular distances (measured from a Au center to the coordination plane of the Au center of the neighboring molecule 3.303, 3.473 Å) are found, but the relative orientation of the molecules is in both cases tail-to-tail with the Au centers on top of the pyrazine ring of the CNNpzC of the neighboring molecule (displacement of 3.187 and 3.916 Å of the Au center with respect to the projection of the Au centers of the neighboring molecules).
Figure S5a: Structure of 12·C₇H₈ (Toluene molecules omitted for clarity). Ellipsoids set at 50% probability. Selected bond distances (Å) and angles (°): Au-N1 2.039(3), Au-C6 2.057(4), Au-C16 2.084(5), Au-C25 2.031(4), C25-N3 1.387(5), C25-N4 1.266(5), N1-Au-C6 80.2(1), N1-Au-C16 81.3(1), C6-Au-25 99.5(2), C16-Au-C25 99.0(2) Au-C25-N3 113.7(3), Au-C25-N4 126.1(3), N3-C25-N4 120.2(4).

Figure S5b: Different views of the crystal packing of compound 12·C₇H₈ (Toluene molecules omitted for clarity). The packing shows the formation of dimers in a tail-to-tail disposition, with a displacement of 4.530 Å between the Au centers. The most relevant interactions in these dimers are a double 2,6-diMePhNH···Npz interaction (2.407 Å) and a π···π double interaction between carbon atoms of the cyclometallated ligand (3.301 Å).
Figure S6: 1H NMR spectra in deuterated DMSO/D$_2$O (1/1) of a 1/1 mixture of compound 7 with GSH after different reaction times at room temperature and compared with the starting materials 7 and GSH and GSSG.

Figure S7: Numbering of the positions for NMR assignment.
Figure S8: 1H NMR spectrum of compound 2 in CD$_2$Cl$_2$
Figure S9: 1H NMR spectrum of compound 3 in CD$_2$Cl$_2$
Figure S10: 1H NMR spectrum of compound 4.SbF$_6$ in CD$_3$CN
Figure S11: 1H NMR spectrum of compound 5 in CD$_2$Cl$_2$
Figure S12: 1H NMR spectrum of compound 6 in CD$_3$CN
Figure S13: 1H NMR spectrum of compound 7 in CD$_3$CN
Figure S14: 1H NMR spectrum of compound 8 in CD$_3$CN
Figure S15: 1H NMR spectrum of compound 9 in CD$_3$CN
Figure S16: 1H NMR spectrum of compound 10 in CD$_2$Cl$_2$
Figure S17: 1H NMR spectrum of compound 11a in CD$_2$Cl$_2$
Figure S18: 1H NMR spectrum of compound 11b in CD$_2$Cl$_2$
Figure S19: 1H NMR spectrum of compound 12 in CD$_3$CN
Figure S20: 1H NMR spectrum of compound 4.BF$_4$ in CD$_3$CN