Highly Versatile Heteroditopic Ligand Scaffolds for Accommodating Group 8, 9 & 11 Heterobimetallic Complexes

Mark R. D. Gatus,ab Mohan Bhadbhadec and Barbara A. Messerleab*

aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia.

bDepartment of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde 2109, Australia.

cMark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.

*barbara.messerle@mq.edu.au
Table of Contents

1. Variable Temperature NMR ... S3

2. NMR Characterisation Data ... S4
 2.1 NMR Data for 2 ... S4
 2.2 NMR Data for 3 ... S5
 2.3 NMR Data for 4 ... S7
 2.4 NMR Data for 7 ... S9
 2.5 NMR Data for 8 ... S11
 2.6 NMR Data for 9 ... S13
 2.7 NMR Data for 11 ... S15
 2.8 NMR Data for 12 ... S16
 2.9 NMR Data for 13 ... S18
 2.10 NMR Data for 14 ... S20
 2.11 NMR Data for 15 ... S22
 2.12 NMR Data for 18 ... S24
 2.13 NMR Data for 19 ... S25
 2.14 NMR Data for 20 ... S27
 2.15 NMR Data for 21 ... S29
 2.16 Diagnostic Signals for 27c & 28c ... S31

3. Crystallographic Experimental Data Tables .. S32

4. References .. S33
1. Variable Temperature NMR

1H NMR (600 MHz, (CD$_3$)$_2$SO) VT spectra of (16)
2. NMR Characterisation Data

2.1 NMR Data for 2

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta 11.11\) (br s, 1H, HA), 8.32 (s, 1H, \(H2'\)), 7.74 (br s, 2H, \(H5'\)), 7.73 (br s, 1H, HC), 7.57 (d, \(4\)\(J_{HH} = 2.1\) Hz, 1H, H1), 7.48 (br d, 2H, \(H3'\)), 7.44 (d, \(4\)\(J_{HH} = 2.2\) Hz, 1H, H6), 7.28 (d, \(4\)\(J_{HH} = 2.1\) Hz, 1H, H3), 7.13 (br s, 1H, HB), 6.68 (d, \(4\)\(J_{HH} = 2.2\) Hz, 1H, H8), 6.21 (br t, 2H, \(H4'\)), 5.93 (d, \(4\)\(J_{HH} = 2.3\) Hz, 2H, HD), 2.71 (t, \(4\)\(J_{HH} = 2.3\), 1H, HF), 1.70 (s, 6H, H14), 1.33 (s, 9H, H16), 1.20 (s, 9H, H18) ppm.

\(^{13}\)C\((^1\)H\)) NMR (151 MHz, CDCl\(_3\)): \(\delta 147.5\) (C2), 147.2 (C7), 143.7 (C12), 140.6 (C3'), 140.5 (C11), 138.3 (CA), 131.7 (C10), 130.6 (C5'), 128.5 (C13), 126.0 (C1), 124.6 (C6), 124.0 (C8), 123.2 (C5), 122.1 (CB), 121.7 (C4), 121.6 (CC), 121.2 (C3), 106.1 (C4'), 77.8 (CE), 74.6 (CF), 73.0 (C2'), 40.8 (CD), 35.0 (C15), 34.7 (C9 \(\times\) C17), 33.4 (C14), 31.4 (C16), 31.3 (C18) ppm.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) spectrum of (2)
2.2 NMR Data for 3

1H NMR (400 MHz, CDCl$_3$): δ 11.36 (br s, 1H, H1*), 8.52 (s, 1H, H2*), 8.44 (s, 1H, H6*), 7.94 (d, 3J$_{H-H}$ = 2.3 Hz, 2H, H5*), 7.81 (br d, 1H, H3*), 7.54 (d, 4J$_{H-H}$ = 2.1 Hz, 1H, H1), 7.41 (d, 4J$_{H-H}$ = 2.2 Hz, 1H, H8), 7.33 (d, 3J$_{H-H}$ = 1.5 Hz, 2H, H3*), 7.29 (m, 3H, H10* and H11*), 7.19 (m, 2H, H9*), 7.11 (d, 4J$_{H-H}$ = 2.2 Hz, 1H, H3), 7.02 (br d, 1H, H2*), 6.74 (d, 4J$_{H-H}$ = 2.1 Hz, 1H, H6), 6.27 (br s, 2H, H4*), 6.17 (t, 3J$_{H-H}$ = 2.0 Hz, 2H, H4*), 5.27 (br s, 2H, H7*), 1.68 (br s, 6H, H14), 1.31 (br s, 9H, H16), 1.20 (br s, 9H, H18) ppm.

13C(1H) NMR (101 MHz, CDCl$_3$): δ 147.2 (C2), 147.1 (C7), 143.7 (C12), 141.1 (C5*), 140.6 (C11), 140.2 (C3*), 139.0 (C1*), 134.4 (C8*), 131.7 (C10), 130.7 (C5'), 129.1 (C10*), 128.8 (C11*), 128.3 (C9*), 128.2 (C13), 126.2 (C6*), 125.8 (C1), 124.3 (C8), 124.0 (C6), 123.7 (C5), 122.5 (C3*), 121.9 (C4), 121.7 (C2*), 121.0 (C3), 105.9 (C4*), 72.7 (C2*), 54.2 (C7*), 44.6 (C4*), 34.9 (C15), 34.7 (C17 & C9), 33.5 (C14), 31.4 (C16 & C18) ppm.
1H NMR (400 MHz, CDCl$_3$) spectrum of (3)

13C(1H) NMR (101 MHz, CDCl$_3$) spectrum of (3)
2.3 NMR Data for 4

\[^1H \text{NMR (600 MHz, CDCl}_3): \delta 7.63 \text{ (br s, 1H, H2'), 7.62 \text{ (d, } ^4J_{HH} = 2.1 \text{ Hz, 1H, H1'), 7.52 \text{ (d, } ^4J_{HH} = 2.1 \text{ Hz, 1H, H8), 7.50 \text{ (d, } ^3J_{HH} = 1.4 \text{ Hz, 2H, H3'). 7.36-7.33 \text{ (m, 11H, o-CH of BPh}_4, \text{ H10' \& H11*), 7.23 \text{ (d, } ^3J_{HH} = 2.3 \text{ Hz, 2H, H5'), 7.21 \text{ (m, 2H, H9*)}, 7.05 \text{ (br s, 2H, H1' \& H6*), 6.94 \text{ (br t, 1H, H3*), 6.93 \text{ (d, } ^4J_{HH} = 2.1 \text{ Hz, 1H, H3}), 6.89 \text{ (t, } ^3J_{HH} = 7.4 \text{ Hz, 8H, m-CH of BPh}_4, 6.78 \text{ (t, } ^3J_{HH} = 7.2 \text{ Hz, 4H, p-CH of BPh}_4, 6.66 \text{ (d, } ^4J_{HH} = 1.9 \text{ Hz, 1H, H6), 6.64 \text{ (br t, 1H, H2*), 6.25 \text{ (t, } ^3J_{HH} = 1.9 \text{ Hz, 2H, H4*), 5.34 \text{ (s, 2H, H7*), 4.86 \text{ (s, 2H, H4*), 1.73 \text{ (s, 6H, H14), 1.31 \text{ (s, 9H, H16), 1.23 \text{ (s, 9H, H18) ppm.)}}

\[^{13}C\text{(^1H) NMR (151 MHz, CDCl}_3): \delta 164.0 \text{ (q, } ^1J_{B\text{-C}} = 48.9 \text{ Hz, ipso-C of BPh}_4, 148.0 \text{ (C2), 147.7 \text{ (C7), 143.9 \text{ (C12), 141.1 \text{ (C3'), 140.6 \text{ (C11), 139.2 \text{ (C5*)}, 136.3 \text{ (o-C of BPh}_4), 135.8 \text{ (C4 & C6*), 134.2 \text{ (C8*), 131.7 \text{ (C10), 129.4 \text{ (C5*), 129.3 \text{ (C10*), 129.1 \text{ (C13 \& C11*), 128.3 \text{ (C9*), 126.0 \text{ (C1), 125.9 \text{ (m-C of BPh4), 124.9 \text{ (C8), 124.8 \text{ (C1*}, 123.7 \text{ (C6), 122.8 \text{ (C3*), 122.7 \text{ (C2*), 122.6 \text{ (C5), 122.2 \text{ (p-C of BPh4), 121.5 \text{ (C3), 106.7 \text{ (C4*), 73.3 \text{ (C2'), 54.4 \text{ (C7*), 44.7 \text{ (C4*), 35.0 \text{ (C15), 34.9 \text{ (C9), 34.8 \text{ (C17), 33.2 \text{ (C14), 31.4 \text{ (C16 \& C18) ppm.)}}

S7
1H NMR (600 MHz, CDCl$_3$) spectrum of (4)

13C(1H) NMR (151 MHz, CDCl$_3$) spectrum of (4)
2.4 NMR Data for 7

\[\delta \]

\[\delta \] NMR (600 MHz, CDCl₃): δ 8.40 (d, J₁-H₂ = 2.3 Hz, 1H, H1), 7.68 (br s, 1H, H2'), 7.65 (dd, J₃-H₄ = 1.8 Hz, J₄-H₃ = 0.5 Hz, 1H, H5*), 7.56 (br d, 2H, H5' & H3), 7.52 (d, J₁-H₃ = 2.3 Hz, 1H, H8), 7.10 (d, J₃-H₈ = 2.4 Hz, 1H, H3*), 7.02 (br d, 1H, H3'), 6.98 (br d, 1H, H2), 6.62 (d, J₃-H₆ = 2.0 Hz, 1H, HC), 6.55 (d J₄-H₆ = 2.2 Hz, 1H, H6), 6.29 (dd, J₃-H₅ = 1.9 Hz, 1H, H4*), 6.22 (dd, J₃-H₄ = 1.9 Hz, 1H, H4'), 5.10 (m, 1H, CH of COD), 4.93 (m, 1H, CH of COD), 4.07 (s, 3H, HA), 3.24 (m, 1H, CH of COD), 2.59 (m, 1H, CH of COD), 2.30-2.05 (m, 3H, CH₂ of COD), 1.80 (s, 3H, H14 & m, 1H for CH₂ of COD), 1.67 (s, 3H, H14 & m, 1H for CH₂ of COD), 1.55 (s, 3H, H14), 1.62 (m, 1H, CH₂ of COD), 1.55 (m, 9H, H18), 1.26 (m, 2H, CH₂ of COD), 1.21 (s, 9H, H16) ppm.

\[\delta \] C NMR (150.9 MHz, CDCl₃): δ 183.8 (d, CD, assigned indirectly by ¹H-¹³C HMBC), 146.6 (C7), 146.5 (C2), 144.4 (C12), 141.1 (C3*), 140.9 (C3'), 140.7 (C11), 129.3 (C10), 129.3 (C5*), 129.2 (C13), 129.0 (C5'), 127.2 (C4), 127.0 (C1), 125.3 (C8), 123.6 (C6), 123.1 (C3), 123.0 (CC), 122.6 (CB), 121.9 (C5), 106.4 (C4*), 106.2 (C4'), 98.3 (CH of COD), 96.9 (CH of COD), 73.3 (C2'), 68.8 (CH of COD), 67.4 (CH of COD), 38.0 (CA), 35.3 (C15), 34.7 (C17), 34.6 (C14), 32.8 (C9 & 2 x CH₂ of COD), 32.2 (2 x CH₂ of COD), 31.7 (C18), 31.4 (C16), 29.6 (2 x CH₂ of COD), 28.0 (2 x CH₂ of COD) ppm.

S9
1H NMR (600 MHz, CDCl$_3$) spectrum of (7)

13C-1H NMR (151 MHz, CDCl$_3$) spectrum of (7)
2.5 NMR Data for 8

\[\delta \]

\[\text{H NMR (400 MHz, CDCl}_3\text{):} \delta \text{ 8.09 (d, } J_{HH} = 2.3 \text{ Hz, 1H, H3'), 7.72 (s, 1H, H2'), 7.67 (d, } J_{HH} = 1.8 \text{ Hz, 1H, H3*), 7.56 (d, } J_{HH} = 1.8 \text{ Hz, 1H, H3*), 7.50 (ap t, 2H, H1 & H8), 7.12 (d, } J_{HH} = 2.4 \text{ Hz, 1H, H5*), 7.00 (d, } J_{HH} = 2.4 \text{ Hz, 1H, HB), 6.54 (d, } J_{HH} = 1.96 \text{ Hz, 1H, HC), 6.53 (d, } J_{HH} = 2.2 \text{ Hz, 1H, H6), 6.30 (ap t, } J_{HH} \text{ ppm.} \]

\[\text{C\{H\}} \text{ NMR (101 MHz, CDCl}_3\text{):} \delta \text{ 180.9 (CD), 146.5 (C7), 146.2 (C2), 144.3 (C5), 141.1 (C3*), 141.0 (C3'), 140.6 (C4), 129.3 (C5* & C5'), 129.1 & 129.0 (C10 & C13), 127.3 (C3), 126.7 (C11), 125.3 (C8), 123.5 (C6), 123.0 (C1), 122.5 (CC), 122.4 (CB), 121.8 (C12), 106.4 (C4*), 106.3 (C4'), 84.0 (CH of COD), 82.9 (CH of COD), 73.2 (C2'), 52.3 (CH of COD), 51.1 (CH of COD), 37.7 (CA), 35.1 (C15), 34.6 (C9, C14 & C17), 33.6 (CH of COD), 32.8 (C14 & CH of COD), 31.5 (C16), 31.4 (C18), 30.4 (CH of COD), 28.4 (CH of COD) ppm.} \]
2.6 NMR Data for 9

1H NMR (600 MHz, CDCl₃): δ 9.91 (s, 1H, H2'), 8.40 (br d, 1H, H3*), 7.63 (d, 3J_HH = 1.9 Hz, 1H, H8), 7.61 (br d, 1H, H5*), 7.61 (br d, 1H, H1), 7.41 (br s, 8H, o-C of BPh₄), 7.05 (br d, 1H, H5'), 6.98 (t, 3J_HH = 7.5 Hz, 8H, m-C of BPh₄), 6.82 (br d, 1H, H3), 6.80 (t, 3J_HH = 7.1 Hz, 4H, p-C of BPh₄), 6.69 (br d, 1H, H4), 6.60 (d, 3J_HH = 1.6 Hz, 1H, H6), 6.54 (br t, 1H, H4*), 6.45 (d, 3J_HH = 2.2 Hz, 1H, H3*), 6.20 (br d, 1H, H6), 5.70 (br t, 1H, H4*), 4.70 (q, 3J_HH = 7.1 Hz, 1H, CH of COD), 4.52 (br q, 1H, CH of COD), 4.36 (t, 3J_HH = 7.1 Hz, 1H, CH of COD), 4.16 (s, 3H, HA), 3.79 (t, 3J_HH = 7.1 Hz, 1H, CH of COD), 3.54 (t, 3J_HH = 7.1 Hz, 1H, CH of COD), 3.54 (t, 3J_HH = 7.1 Hz, 1H, CH of COD) 2.59 (br q, 1H, CH of COD), 2.47 (m, 2H, CH₂ of COD), 2.10 (m, 3H, CH₂ of COD), 1.94 (m, 4H, CH₂ of COD), 1.87 (s, 3H, H14), 1.73 (m, 3H, CH₂ of COD), 1.68 (s, 3H, H14), 1.58 (m, 1H, CH₂ of COD), 1.39 (m, 3H, CH₂ of COD), 1.33 (s, 9H, H16), 1.27 (s, 9H, H18) ppm.

13C{1H} NMR (151 MHz, CDCl₃): δ 183.0 (CD, assigned indirectly by 1H-13C HMBC), 164.4 (q, 1J_{C-B} = 49.1 Hz, ipso-C of BPh₄), 146.7 (C2), 145.4 (C7), 143.1 (C4), 142.9 (C5'), 141.6 (C5*), 136.5 (o-C of BPh₄), 135.8 (C3'), 135.4 (C3*), 131.0 (C13), 130.2 (C10), 128.5 (C11), 126.8 (C12), 126.0 (C3 & C8), 125.7 (m-C of BPh₄), 125.4 (CC), 124.3 (C1), 123.1 (CB), 122.4 (C6), 121.8 (p-C of BPh₄), 121.6 (C5), 108.8 (C4'), 108.2 (C4*), 98.0 (CH of COD), 72.0 (C2'), 71.2 (CH of COD), 70.8 (CH of COD), 69.4 (CH of COD), 67.0 (CH of COD), 65.4 (CH of COD), 65.1 (CH of COD), 38.9 (CA), 34.8 (C9), 34.7 (C15 & C17), 33.78 & 33.08 (CH₂ of COD), 32.7 (C14), 31.7 (CH₂ of COD), 31.5 (C18), 31.4 (C16), 30.9, 29.9, 28.7, 28.4 & 27.3 (CH₂ of COD) ppm.
1H NMR (600 MHz, CDCl₃) spectrum of (9)

13C{¹H} NMR (151 MHz, CDCl₃) spectrum of (9)
2.7 NMR Data for 11

\(^1\)H NMR (600 MHz, CD\(_2\)Cl\(_2\), 233 K): \(\delta\) 9.33 (s, 1H, H2\(^\prime\)), 8.55 (br d, 1H, H5\(^\prime\)), 8.09 (br d, 1H, H8), 7.62 (br d, 1H, H3) 7.61 (br d, 1H, H8), 7.58 (br d, 1H, H3*) 7.30 (br m, 8H, ipso-C of BPh\(_4\)), 7.10 (br d, 1H, HB), 7.05 (br d, 1H, H1), 7.02 (t, \(3\)J\(_{H-H}\) = 7.3 Hz, 8H, m-CH of BPh\(_4\)), 6.85 (t, \(3\)J\(_{H-H}\) = 7.1 Hz, 4H, p-CH of BPh\(_4\)), 6.72 (br t, 1H, H4\(^\prime\)), 6.68 (br d, 1H, H6), 6.25 (br d, 1H, H5\(^\prime\)), 6.07 (br d, 1H, H4\(^\prime\)), 4.04 (s, 3H, HA), 1.77 (s, 3H, H14), 1.70 (s, 3H, H14), 1.30 (s, 9H, H16), 1.29 (s, 9H, H18) ppm.

\(^{13}\)C\(^{1}\)H NMR (151 MHz, CD\(_2\)Cl\(_2\), 233 K): \(\delta\) 185.2 (d, \(1\)J\(_{Rh-CO}\) = 53.6 Hz, CO), 181.7 (d, \(1\)J\(_{Rh-CO}\) = 75.5 Hz, CO), 176.2 (d, \(1\)J\(_{Rh-C} = 43.8 Hz, CD\)), 170.7 (s, Ir-CO), 169.7 (s, Ir-CO), 163.8 (q, \(1\)J\(_{B-C}\) = 49.4 Hz, ipso-C of BPh\(_4\)), 147.1 (C3\(^\prime\)), 147.0 (C3\(^\prime\)), 146.7 (C2), 145.7 (C7), 144.2 (C12), 142.0 (C11), 136.2 (C5\(^\prime\)), 135.8 (C5\(^\prime\)), 135.6 (o-C of BPh\(_4\)), 130.0 (C10), 129.7 (C13), 127.0 (C8), 126.2 (C4), 125.8 (m-C of BPh\(_4\)), 125.5 (C1 & C3), 125.0 (CC), 123.7 (CB), 123.0 (C6), 121.8 (p-C of BPh\(_4\)), 119.1 (C5), 109.4 (C4\(^\prime\)), 108.7 (C4\(^\prime\)), 71.2 (C2\(^\prime\)), 39.0 (CA), 34.6 (C17), 34.4 (C15), 34.2 (C9), 33.8 (C14), 33.6 (C14), 30.9 (C16), 30.7 (C18) ppm.

\(^1\)H NMR (600 MHz, CD\(_2\)Cl\(_2\), 233 K) spectrum of (11)
2.8 NMR Data for 12

1H NMR (600 MHz, CD$_2$Cl$_2$, 233 K): δ 9.02 (s, 1H, H2'), 8.37 (br d, 1H, H5*), 7.95 (br d, 1H, H3*), 7.62 (br m, 2H, H1 & H8), 7.49 (br d, 1H, H3'), 7.30 (br t, 8H, o-C$_6$H$_4$ of BPh$_4$), 7.12 (br d, 1H, H3), 7.02 (t, $J_{H\text{-}H} = 7.4$ Hz, 8H, m-C$_6$H$_4$ of BPh$_4$), 6.99 (br d, 1H, H5), 6.85 (t, $J = 7.2$ Hz, 4H, p-C$_6$H$_4$ of BPh$_4$), 6.72 (br d, 1H, H6), 6.67 (br t, 1H, H4*), 6.28 (br d, 1H, H5'), 6.08 (br t, 1H, H4'), 4.02 (s, 3H, HA), 1.77 (s, 3H, H14), 1.67 (s, 3H, H14), 1.30 (br s, 18H, H16 & H18) ppm.

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 233 K): δ 182.7 (d, 1J$_{Rh\text{-}CO} = 69.3$ Hz, Rh-CO), 182.1 (d, 1J$_{Rh\text{-}CO} = 68.0$ Hz, Rh-CO), 181.1 (Ir-CO), 175.5 (CA), 166.7 (Ir-CO), 163.7 (q, 1J$_{B. C} = 49.9$ Hz, ipso-C of BPh$_4$), 146.6 (C2), 146.3 (C3*), 146.2 (C3*), 145.8 (C7), 144.3 (C12), 142.0 (C11), 135.6 (o-C of BPh$_4$), 135.4 (C5*), 135.0 (C5*), 129.9 (C10), 129.8 (C13), 126.8 (C8), 125.8 (m-C of BPh$_4$), 125.6 (C1), 125.4 (C3), 125.2 (C4), 124.8 (CB), 123.6 (CC), 122.3 (C6), 121.8 (p-C of BPh$_4$), 119.5 (C5), 108.9 (C4*), 108.2 (C4*), 70.9 (C2*), 38.8 (CD), 34.6 (C17), 34.4 (C15), 34.2 (C9), 33.7 (C14), 33.4 (C14), 30.1 (C16), 30.7 (C18) ppm.
1H NMR (600 MHz, CD$_2$Cl$_2$, 233 K) spectrum of (12)

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 233 K) spectrum of (12)
2.9 NMR Data for 13

1H NMR (600 MHz, CDCl$_3$): δ 7.61 (m, 2H, H3’ & H3*), 7.60 (br s, 1H, H2’), 7.56 (d, 4J$_{HH} = 2.3$ Hz, 1H, H1), 7.47 (br d, 1H, H8 & m, 8H, o-CH of BPh$_4$), 7.35 (m, 3H, HJ & HK), 7.31 (d, 4J$_{HH} = 2.2$ Hz, 1H, H3), 7.11 (m, 2H, H1), 7.06 (d, 3J$_{HH} = 2.4$ Hz, 1H, H5’), 7.04 (d, 3J$_{HH} = 2.2$ Hz, 1H, H5*), 7.01 (t, 3J$_{HH} = 2.0$ Hz, 1H, H14), 6.88 (t, 3J$_{HH} = 1.8$ Hz, 1H, HB), 6.63 (d, 3J$_{HH} = 1.9$ Hz, 1H, HC), 6.49 (d, 4J$_{HH} = 2.1$ Hz, 1H, H6), 6.33 (t, 3J$_{HH} = 2.0$ Hz, 1H, H4’), 6.30 (t, 3J$_{HH} = 2.1$ Hz, 1H, H4*), 6.18 (br s, 1H, HF), 5.24 (br t, 1H, CH of COD), 5.04 (d, 2J$_{HH} = 15.0$ Hz, 1H, HG), 4.98 (d, 2J$_{HH} = 14.6$ Hz, 1H, HG), 4.73 (d, 2J$_{HH} = 15.4$ Hz, 1H, HD), 4.36 (br q, 1H, CH of COD), 4.28 (d, 2J$_{HH} = 15.4$ Hz, 1H, HD), 3.49 (br t, 1H, CH of COD), 2.73 (br q, 1H, CH of COD), 2.42 (m, 1H, CH$_2$ of COD), 2.16 (m, 2H, CH$_2$ of COD), 1.96 (m, 2H, CH$_2$ of COD), 1.77 (s, 3H, H14), 1.65 (m, 2H, CH$_2$ of COD), 1.61 (s, 3H, H14), 1.52 (m, 1H, CH$_2$ of COD), 1.41 (s, 9H, H16), 1.22 (s, 9H, H18) ppm.

13C(1H) NMR (151 MHz, CDCl$_3$): δ 175.0 (d, 1J$_{C-Rh} = 51.5$ Hz, CA), 164.3 (q, 1J$_{B-C} = 49.5$ Hz, ipso-C of BPh$_4$), 146.9 (C7), 146.7 (C2), 144.1 (C12), 142.3 (C11), 141.1 (C3’), 140.9 (C3*), 139.2 (CE), 136.4 (o-CH of BPh$_4$), 133.3 (CH), 130.6 (C10), 129.3 (CJ, CK & C5*), 129.0 (C5’), 128.7 (C13), 128.5 (C1), 126.3 (C4), 125.9 (m-C of BPh$_4$), 124.9 (C8), 124.7 (C3), 124.5 (C1), 124.2 (CF), 123.7 (C6), 122.9 (CB & CC), 122.5 (C5), 122.1 (p-C of BPh$_4$), 106.5 (C4’ & C4*), 96.2 (2C, CH of COD), 80.2 & 76.0 (CH of COD), 73.4 (C2’), 55.1 (CG), 44.7 (CD), 34.9 (C15), 34.7 (C9 & C17), 34.3 (C14), 34.1 (CH$_2$ of COD), 32.3 (C14), 31.6 (C16), 31.4 (C18), 30.7, 30.1 & 27.5 (CH$_2$ of COD) ppm.
1H NMR (600 MHz, CDCl$_3$) spectrum of (13)

13C(1H) NMR (151 MHz, CDCl$_3$) spectrum of (13)
2.10 NMR Data for 14

1H NMR (600 MHz, CD$_2$Cl$_2$, 235 K):
δ 7.95 (d, 3$J_{H-H} = 2.2$ Hz, 1H, H5*), 7.89 (d, 4$J_{H-H} = 2.0$ Hz, 1H, H8), 7.68 (d, 4$J_{H-H} = 2.1$ Hz, 1H, H1), 7.59 (d, 3$J_{H-H} = 2.1$ Hz, 1H, H5'), 7.44 – 7.39 (m, 3H, H J & K), 7.37 (m, 16H, o-CH of BPh$_4$), 7.35 (d, 3$J_{H-H} = 2.8$ Hz, 1H, H3*), 7.28 – 7.24 (m, 3H, HI & H3), 7.16 (d, 4$J_{H-H} = 2.0$ Hz, 1H, H6), 7.10 (d, 3$J_{H-H} = 2.9$ Hz, 1H, H3'), 7.04 (br s, 1H, H2'), 6.96 (t, 3$J_{H-H} = 7.2$ Hz, 16H, m-CH of BPh$_4$), 6.81 (t, 3$J_{H-H} = 7.2$ Hz, 8H, p-CH of BPh$_4$), 6.36 (t, 3$J_{H-H} = 2.5$ Hz, 1H, H4*), 6.27 (br m, 2H, H4' & HF), 6.19 (d, 3$J_{H-H} = 1.6$ Hz, 1H, HC), 5.70 (d, 3$J_{H-H} = 1.6$ Hz, 1H, HB), 5.32 (d, 2$J_{H-H} = 14.8$ Hz, 1H, HG), 5.29 (d, 2$J_{H-H} = 14.8$ Hz, 1H, HG), 3.54 (d, 2$J_{H-H} = 15.8$ Hz, 1H, HD), 3.27 (d, 2$J_{H-H} = 15.8$ Hz, 1H, HD), 1.84 (s, 3H, H14), 1.80 (d, 3H, H14), 1.36 (s, 9H, H16), 1.32 (s, 9H, H18) ppm.

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 235 K): δ 184.9 (d, 1$J_{Rh-CO} = 71.3$ Hz, CO), 184.0 (d, 1$J_{Rh-CO} = 56.3$ Hz, CO), 172.3 (d, 1$J_{Rh-C} = 47.9$ Hz, CA), 169.7 (s, Ir-CO), 169.5 (s, Ir-CO), 163.8 (q, 1$J_{B-C} = 48.9$ Hz, ipso-C of BPh$_4$), 149.3 (C7), 148.5 (C5*), 147.5 (C2), 146.9 (C5'), 143.6 (C12), 139.7 (C11), 139.0 (C13), 135.5 (o-C of BPh$_4$), 135.3 (C3*), 134.7 (C3'), 132.5 (CH), 131.2 (C10), 130.6 (C8), 129.8 (C13), 129.5 (C6 & CK), 129.2 (CJ), 128.5 (CI), 126.9 (C3), 126.0 (m-C of BPh$_4$), 125.8 (C1), 124.8 (C4), 123.8 (CF), 122.0 (p-C of BPh$_4$), 121.2 (CC), 121.1 (CB), 111.1 (C5), 109.8 (C4*), 109.3 (C4'), 76.9 (C2'), 55.5 (CG), 42.8 (CD), 35.2 (C14), 34.8 (C15), 34.7 (C17), 34.5 (C9), 31.9 (C14), 30.8 (C16 & C18) ppm.
1H NMR (600 MHz, CD$_2$Cl$_2$, 235 K) spectrum of (14)

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 235 K) spectrum of (14)
2.11 NMR Data for 15

1H NMR (600 MHz, CDCl$_3$): δ 7.80 (s, 1H, H2'), 7.59 (d, 3J$_{HH}$ = 1.3 Hz, 2H, H3'), 7.53 (d, 4J$_{HH}$ = 2.2 Hz, 1H, H3), 7.50 (br s, 2H, H1 & H8), 7.13 (d, 3J$_{HH}$ = 2.2 Hz, 2H, H5'), 7.11 (d, 3J$_{HH}$ = 1.8 Hz, 1H, HB), 6.86 (d, 3J$_{HH}$ = 1.8 Hz, 1H, HC), 6.56 (d, 4J$_{HH}$ = 1.9 Hz, 1H, H6), 6.28 (t, 3J$_{HH}$ = 2.0 Hz, 2H, H4'), 3.99 (s, 3H, HA), 1.71 (s, 6H, H14), 1.36 (s, 9H, H16), 1.21 (s, 9H, H18) ppm.

13C NMR (151 MHz, CDCl$_3$): δ 182.1 (CD), 147.0 (C7), 146.8 (C12), 141.3 (C11), 140.1 (C3'), 130.8 (C10 or C13), 129.7 (C10 or C13), 129.2 (C5'), 126.0 (C4), 124.8 (C8), 123.9 (C1), 123.6 (C3), 123.4 (C6), 122.7 (CC), 122.2 (C5), 122.0 (CB), 106.6 (C4'), 73.4 (C2'), 38.3 (CA), 35.0 (C15), 35.0 (C9), 34.7 (C17), 32.8 (C14), 31.5 (C16), 31.4 (C18) ppm.

1H NMR (600 MHz, CDCl$_3$) spectrum of (15)
$^{13}\text{C}^{1\text{H}}$ NMR (151 MHz, CDCl$_3$) spectrum of (15)
2.12 NMR Data for 18

Assigned NMR of major conformation only: 1H NMR (600 MHz, CDCl$_3$, 233 K): δ 8.58 (br d, 1H, H3), 7.84 (s, 1H, H2'), 7.70 (br d, 1H, H3'), 7.63 (br d, 1H, H3*), 7.49 (br d, 1H, H8), 7.47 (br d, 1H, H1), 7.28 (br d, 1H, H5'), 7.26 (1H, HB), 6.92 (2H, HC & H5*), 6.77 (br d, 1H, H6), 6.34 (br t, 1H, H4'), 6.30 (br t, 1H, H4*), 4.13 (s, 3H, HA), 1.83 (br s, 3H, H14), 1.52 (br s, 3H, H14), 1.38 (br s, 9H, H16), 1.19 (br s, 9H, H18), 1.17 (s, 15H, Cp*CH$_3$) ppm.

13C(1H) NMR (151 MHz, CDCl$_3$, 233 K): δ 158.1 (CD), 146.6 (C7), 145.6 (C2), 144.0 (C12), 142.1 (C11), 141.6 (C3'), 141.1 (C3*), 129.8 (C5'), 129.7 (C13), 128.7 (C3), 128.2 (C5*), 128.1 (C10), 125.8 (CC), 125.2 (C8), 123.7 (C1 & CB), 123.5 (C6), 122.0 (C4), 121.0 (C5), 106.8 (C4*), 106.4 (C4*), 88.8 (Cq of Cp*), 71.7 (C2'), 40.2 (CA), 36.1 (C14), 35.1 (C15), 34.6 (C9), 34.5 (C17), 31.4 (C16), 31.3 (C18), 30.1 (C14), 8.5 (CH$_3$ of Cp*) ppm.

1H NMR (600 MHz, CDCl$_3$, 233 K) spectrum of (18)
2.13 NMR Data for 19

1H NMR (600 MHz, CD$_2$Cl$_2$): δ 8.98 (s, 1H, H$_2^2$), 8.46 (d, 3$J_{H-H} = 2.7$ Hz, 1H, H$_3^3$), 7.70 (d, 4$J_{H-H} = 2.2$ Hz, 1H, H$_8$), 7.60 (d, 4$J_{H-H} = 2.3$ Hz, 1H, H$_1$), 7.45 (d, 3$J_{H-H} = 2.3$ Hz, 1H, H$_5^5$), 7.35 (br t, 9H, o-CH of BPh$_4$ and H$_5^*$), 7.16 (d, 3$J_{H-H} = 2.0$ Hz, 1H, HB), 7.04 (t, 3$J_{H-H} = 7.4$ Hz, 8H, m-CH of BPh$_4$), 6.98 (d, 3$J_{H-H} = 2.6$ Hz, 1H, H$_3^*$), 6.89 (t, 3$J_{H-H} = 7.25$ Hz, 5H, p-CH of BPh$_4$ and H$_3$), 6.70 (d, 3J_{H-H}= 2.0 Hz, 1H, HC), 6.48 (br d, 1H, H$_6$), 6.06 (t, 3J_{H-H}= 2.5 Hz, 1H, H$_4^*$), 4.66 (t, 3J_{H-H}= 7.2 Hz, 1H, CH of COD), 4.12 (s, 3H, HA), 4.04 – 3.95 (m, 2H, CH of COD), 3.92 (t, 3J_{H-H}= 7.3 Hz, 1H, CH of COD), 2.84 – 2.76 (m, 1H, CH$_2$ of COD), 2.24 (m, 2H, CH$_2$ of COD), 2.01 (s, 3H, H$_{14}$), 2.00 – 1.92 (m, 2H, CH$_2$ of COD), 1.90-1.80 (m, 1H, CH$_2$ of COD), 1.65-1.54 (m, 2H, CH$_2$ of COD), 1.52 (s, 15H, Cp*H), 1.37 (s, 9H, H$_{16}$), 1.33 (s, 9H, H$_{18}$), 1.24 (s, 3H, H$_{14}$) ppm.

13C NMR (151 MHz, CD$_2$Cl$_2$): δ 164.5 (q, 1$J_{B-C} = 49.1$ Hz, ipso-C of BPh$_4$), 156.0 (CD), 150.1 (C$_{12}$), 147.6 (C$_{11}$), 146.0 (C$_7$), 146.0 (C$_2$), 141.7 (C$_5^*$ & C$_5^*$), 136.3 (o-C of BPh$_4$), 136.0 (C$_3^*$), 134.6 (C$_3^*$), 133.8 (C$_{10}$), 133.3 (C$_{13}$), 128.7 (CC), 127.9 (C$_4$), 126.0 (m-C of BPh$_4$), 124.4 (C$_3$), 123.7 (C$_8$), 123.5 (C$_5$), 123.4 (CB), 123.2
(C1), 122.7 (C6), 122.1 (p-C of BPh₄), 107.8 (C4'), 107.5 (C4*), 89.7 (Cq of Cp*),
85.8 (d, \(^1J_{C-Rh} = 12.3\) Hz, CH of COD), 85.3 (d, \(^1J_{C-Rh} = 12.3\) Hz, CH of COD), 80.7 (d,
\(^1J_{C-Rh} = 12.3\) Hz, CH of COD), 80.1 (d, \(^1J_{C-Rh} = 12.3\) Hz, CH of COD), 74.1 (C2'), 40.1
(CA), 36.2 (C9), 35.0 (C17), 34.9 (C15), 33.8 (C14), 33.1 (CH₂ of COD), 33.0 (CH₂ of
COD), 31.6 (C18), 31.5 (C16), 28.1 (CH₂ of COD), 28.0 (CH₂ of COD), 23.4 (C14),
9.7 (CH₃ of Cp*) ppm.

\(^1H\) NMR (600 MHz, CD₂Cl₂) spectrum of (19)
2.14 NMR Data for 20

1H NMR (400 MHz, CD$_2$Cl$_2$): δ 7.97 (d, $^4J_{H-H} = 2.1$ Hz, 1H, H3), 7.72 (m, 2H, H1 & H2'), 6.76 (br d, 1H, H3'), 7.65 (d, $^4J_{H-H} = 2.0$ Hz, 1H, H8), 7.51 (br d, 1H, H3*), 7.44 (m, 3H, HJ & HK), 7.40-7.33 (m, 9H, H5* & ortho-C of BPh$_4$), 7.32 (br d, 1H, H5'), 7.15 (d, $^3J_{H-H} = 2.1$ Hz, 1H, H5'), 7.01 (t, $^3J_{H-H} = 7.3$ Hz, 8H, meta-CH of BPh$_4$), 6.90 (d, $^4J_{H-H} = 1.8$ Hz, 1H, H6), 6.86 (t, $^3J_{H-H} = 7.2$ Hz, 4H, para-CH of BPh$_4$), 6.82 (br s, 1H, HF), 6.40 (br t, 1H, H4'), 6.34 (br s, 1H, Hz of Ru), 5.51 (d, $^3J_{H-H} = 14.8$ Hz, 1H, HG), 5.42 (d, $^4J_{H-H} = 14.8$ Hz, 1H, HG), 5.03 (br s, 6H, Hz of Ru), 5.02 (d, $^3J_{H-H} = 15.9$ Hz, 1H, HD), 4.82 (d, $^3J_{H-H} = 15.9$, 1H, HD), 1.88 (s, 3H, H14), 1.71 (s, 1H, H14), 1.43 (s, 9H, H16), 1.29 (s, 9H, H18) ppm.

13C{'1H} NMR (101 MHz, CD$_2$Cl$_2$): δ 174.4 (C A), 164.4 (q, $^1J_{B-C} = 49.25$, ipso-C of BPh$_4$), 148.0 (C2), 147.6 (C7), 144.5 (C12), 143.3 (C11), 141.3 (C3' & C3*), 140.8 (C E), 136.4 (o-C of BPh$_4$), 133.5 (C H), 130.6 (C13), 130.2 (C10), 130.1 (C5*), 129.7 (C K & C J), 129.1 (C5'), 128.7 (C I), 127.3 (C3), 127.0 (C4), 126.2 (meta-C of BPh$_4$), 125.7 (C B), 125.5 (C8), 125.1 (C1), 124.0 (C6), 123.9 (C C), 123.7 (C F), 122.5 (C5), 122.3 (p-C of BPh$_4$), 107.2 (C4*), 105.6.
(C4'), 88.0 (Cbz of Ru), 73.2 (C2'), 56.2 (CG), 44.9 (CD), 35.4 (C15), 35.3 (C9), 35.0 (C17), 34.4 (C14), 31.5 (C16), 31.4 (C18 & C14) ppm.

1H NMR (400 MHz, CD$_2$Cl$_2$) spectrum of (20)

13C(1H) NMR (101 MHz, CD$_2$Cl$_2$) spectrum of (20)
2.15 NMR Data for 21

1H NMR (600 MHz, CD$_2$Cl$_2$): δ 9.00 (s, 1H, H2'), 8.35 (d, 3J$_{H-H}$ = 2.7 Hz, 1H, H3'), 7.85 (d, 4J$_{H-H}$ = 2.3 Hz, 1H, H3), 7.75 (d, 4J$_{H-H}$ = 2.2 Hz, 1H, H8), 7.74 (d, 3J$_{H-H}$ = 2.5 Hz, 1H, H5*), 7.54 (d, 3J$_{H-H}$ = 2.4 Hz, 1H, H5*), 7.50-7.45 (m, 3H, HJ & HK), 7.35 (br t, 16H, o-CH of BPh$_4$), 7.31 (d, 4J$_{H-H}$ = 2.3 Hz, 1H, H1), 7.30-7.28 (m, 2H, HI), 6.99 (t, 7.4 Hz, 17H, m-CH of BPh$_4$ & HB), 6.84 (t, 3J$_{H-H}$ = 7.1 Hz, 8H, p-CH of BPh$_4$), 6.80 (d, 3J$_{H-H}$ = 2.0 Hz, 1H, HC), 6.64 (t, 3J$_{H-H}$ = 2.5 Hz, 1H, H4*), 6.57 (s, 1H, HF), 6.46 (d, 3J$_{H-H}$ = 2.6 Hz, 1H, H3*), 6.24 (t, 3J$_{H-H}$ = 2.6 Hz, 1H, H5*), 6.16 (d, 4J$_{H-H}$ = 1.8 Hz, 1H, H6), 5.35 (d, 2J$_{H-H}$ = 14.4 Hz, 1H, HG), 5.26 (d, 2J$_{H-H}$ = 14.4 Hz, 1H, HG), 4.99 (s, 6H, Hbz of Ru), 4.88 (d, 2J$_{H-H}$ = 16.0 Hz, 1H, HD), 4.46 (t, 3J$_{H-H}$ = 6.9 Hz, 1H, CH of COD), 4.12 (d, 2J$_{H-H}$ = 16.0 Hz, 1H, HD), 3.84 (m, 1H, CH of COD), 3.76-3.69 (m, 2H, CH of COD), 2.50 (m, 1H, CH$_2$ of COD), 2.20 (m, 1H, CH$_2$ of COD), 2.10 (m, 1H, CH$_2$ of COD), 2.03 (s, 3H, H14), 1.96 (m, 1H, CH$_2$ of COD), 1.88 (m, 1H, CH$_2$ of COD), 1.65 (m, 1H, CH$_2$ of COD), 1.49-1.40 (m, 11H, H16 & CH$_2$ of COD), 1.40 (s, 3H, H14), 1.32 (s, 9H, H18) ppm.

13C(1H) NMR (150.9 MHz, CDCl$_3$): δ 169.1 (CA), 164.4 (q, 1J$_{B-C}$ = 49.5 Hz, ipso-C of BPh$_4$), 149.4 (C2), 147.9 (C7), 147.2 (C12), 145.0 (C11), 143.0 (C5*), 143.0 (C5'), 139.8 (CE), 136.3 (o-CH of BPh$_4$), 135.5 (C3'), 135.4 (C3*), 134.5 (C13), 132.9 (CH), 132.0 (C10), 130.0 (CK), 129.8 (CJ), 129.1 (Cl), 127.85 (C4), 126.4 (C1), 126.2 (m-CH of BPh$_4$), 125.4 (C3), 125.3 (C8), 124.5 (CF), 124.2 (CC), 122.8 (C6), 122.3 (CB & p-CH of BPh$_4$), 122.1 (C5), 109.1 (C4'), 108.7 (C4*), 89.1 (Cbz of Ru), 72.4 (C2'), 71.0, 70.5, 67.1 & 65.5 (4 x CH of COD), 56.2 (CG), 44.8 (CD), 36.0 (C9), 35.3 (C15), 35.2 (C17), 34.3 (C14), 33.7 & 33.0 (2 x CH$_2$ of COD), 31.5 (C16 & C18), 29.1, 28.9 (2 x CH$_2$ of COD) ppm.
1H NMR (600 MHz, CD$_2$Cl$_2$) spectrum of (21)

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$) spectrum of (21)
2.16 Diagnostic Signals for 27c & 28c

The N-silylamines 27c and 28c could not be isolated and purified due to their ability to hydrolyse in air. Therefore the N-silylamines were identified by diagnostic signals in the 1H NMR spectra. 27c and 28c were hydrolysed with water, purified and confirmed by comparison of the 1H NMR spectra with literature.[1]

27c

1H NMR (500 MHz, C7D8): δ 7.60 (m, 2H, ArH), 7.17 (m, 3H, ArH), 5.76 (s, 1H, HSiPh2), 3.53 (m, 1H, H4), (3.04, 1.78, 1.64, 1.54, 1.27 (multiplets, 6H, belonging to H1-3)), 1.00 (d, 3J$_{H-H}$ = 6.3 Hz, 3H, H5) ppm.

28c

1H NMR (600 MHz, C7D8): δ 7.60 (m, 5H, ArH), 7.18 (m, 5H, ArH), 7.02 (m, 2H, ArH), 6.97 (m, ArH), 6.87 (d, 3J$_{H-H}$ = 7.6 Hz, 2H, ArH), 5.48 (1H, HSiPh2), 3.69 (m, 1H, H4), 3.06 (t, 3J$_{H-H}$ = 6.2 Hz, 2H, H1), 2.79 (dd, 2J$_{H-H}$ = 13.2 Hz, 3J$_{H-H}$ = 4.7 Hz, 1H, H5), 2.41 (dd, 2J$_{H-H}$ = 13.2 Hz, 3J$_{H-H}$ = 9.3 Hz, 1H, H5), 1.65-1.49 (m, 4H, H2 and H3) ppm.
3. Crystallographic Experimental Data Tables

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>13</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₅₀H₆₄ClIrN₆ORh·C₂H₅B</td>
<td>C₂H₂BCl₂N₂OORh·C₂H₅B</td>
<td>C₂H₂AuClIN₆ORh·0.5(C₂H₅O)</td>
<td>C₂H₂AuClIN₆O</td>
</tr>
<tr>
<td>Mᵣ</td>
<td>1414.84</td>
<td>1322.12</td>
<td>1155.17</td>
<td>781.13</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2₁/c</td>
<td>Monoclinic, P2₁/c</td>
<td>Monoclinic, C2/c</td>
<td>Monoclinic, P2₁/n</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>b (°)</td>
<td>104.72 (3)</td>
<td>108.382 (4)</td>
<td>96.356 (8)</td>
<td>95.433 (4)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>7388 (3)</td>
<td>6638.6 (16)</td>
<td>10587.4 (18)</td>
<td>3756.0 (6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>m (mm⁻¹)</td>
<td>2.10</td>
<td>0.39</td>
<td>3.75</td>
<td>4.02</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.17 x 0.06 x 0.04</td>
<td>0.16 x 0.10 x 0.07</td>
<td>0.12 x 0.07 x 0.03</td>
<td>0.30 x 0.26 x 0.12</td>
</tr>
</tbody>
</table>

Data collection

<table>
<thead>
<tr>
<th>Diffractometer</th>
<th>Australian Synchrotron</th>
<th>Bruker kappa APEXII CCD Diffractometer</th>
<th>Bruker APEX-II CCD</th>
<th>Bruker kappa APEXII CCD Diffractometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption correction</td>
<td>–</td>
<td>Multi-scan SADABS (Bruker, 2001)</td>
<td>Multi-scan SADABS2012/1 (Bruker,2012) was used for absorption correction. wR²(int) was 0.1068 before and 0.0622 after correction. The Ratio of minimum to maximum transmission is 0.8459. The i/2 correction factor is 0.0015.</td>
<td>Multi-scan SADABS (Bruker, 2001)</td>
</tr>
<tr>
<td>Tmin, Tmax</td>
<td>–</td>
<td>0.942, 0.975</td>
<td>0.631, 0.746</td>
<td>0.383, 0.646</td>
</tr>
<tr>
<td>No. of measured, independent and observed [I > 2σ(I)] reflections</td>
<td>155483, 22328, 16946</td>
<td>48783, 11669, 5504</td>
<td>19350, 6407, 5771</td>
<td></td>
</tr>
<tr>
<td>Rint</td>
<td>0.086</td>
<td>0.184</td>
<td>0.083</td>
<td>0.027</td>
</tr>
<tr>
<td>(sin q/l)max (Å⁻¹)</td>
<td>0.741</td>
<td>0.595</td>
<td>0.595</td>
<td>0.595</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(F² > 2σ(F²), wR(F²), S</td>
<td>0.048, 0.127, 1.09</td>
<td>0.062, 0.116, 0.83</td>
<td>0.052, 0.140, 1.03</td>
<td>0.043, 0.083, 1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>No. of reflections</td>
<td>22328</td>
<td>11669</td>
<td>9300</td>
<td>6407</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>805</td>
<td>819</td>
<td>607</td>
<td>397</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>18</td>
<td>0</td>
<td>310</td>
<td>0</td>
</tr>
<tr>
<td>(w = 1/[s^2(F_o^2) + (0.0658P)^2 + 6.3847P]) where (P = (F_o^2 + 2F_i^2)/3)</td>
<td>(w = 1/[s^2(F_o^2) + (0.0253P)^2]) where (P = (F_o^2 + 2F_i^2)/3)</td>
<td>(w = 1/[s^2(F_o^2) + (0.0609P)^2 + 122.2848P]) where (P = (F_o^2 + 2F_i^2)/3)</td>
<td>(w = 1/[s^2(F_o^2) + (0.0125P)^2 + 18.137P]) where (P = (F_o^2 + 2F_i^2)/3)</td>
<td></td>
</tr>
<tr>
<td>(D_{\rho_{\text{max}}}, D_{\rho_{\text{min}}}) (e Å(^{-3}))</td>
<td>2.13, -3.75</td>
<td>0.53, -1.52</td>
<td>2.58, -2.06</td>
<td>1.43, -3.24</td>
</tr>
</tbody>
</table>
4. References