Supporting information.

IR- spectra. Table S1. IR-spectra (cm^{-1} in KBr) of starting compounds, 1 and 2.

Components	Cp* ₂ Cr	H ₃ TPCor	$(Cp*_{2}Cr^{+})(H^{+})(H_{2}TPCor^{\bullet 2^{-}})$	${crypt[2,2,2](Na^{+})}$
	_		$C_6H_4Cl_2$ (1)	$(H_2 TPCor^{-}) \cdot 0.5C_6 H_4 Cl_2(2)$
Corrole		663m	662w	660w
Contone		669w	668w*	668w*
		700s	700s	701s
		722w	714w 721w	7013 715w
		752s	754s	713 W
		764m	_	7558 760m
		7888	795s	702111
		819w	-	/88W
		875w	885	820m*
		064m	058m	871w
		904III 087	7 5 8111	970w
		98/W	-	987w
		1011W	1003m 1014w	1003m
		1045W	1053m	1045w
		1062w	10/3m*	1073w*
		1176w	1177w	1174w
		1224w	1225w	1222w
		1236w	1236w	1231w
		1263w	1265m*	1266w
		1286w	-	1285w
		1308w	-	1302m
		1338w	1329m	1302m
		1377w	1378m*	132 m 1375w
		1409w	1418w*	1417w
		1439w	1436m	1417 w 1425 w
		1465w	_	1455w
		1495m	1494m	1400111
		1519w	-	1493111
		151)w	15568 15768	1521W*
		1596m	1595m	1546w
		2020m	3027w	1595m
		2051w	3027W	3030w
		2271w	3037W	3057w
		55/1W	-	-
		3404W	-	-
Cation	$Cp*_2Cr$		Cp* ₂ Cr	$cryptand(Na^{+})$
	419w		-	820m*
	585w		-	850m
	10225		1020m	927m
	10223 1068w		1073m*	939w
	1262w		1265m*	1073w*
	1202w		-	1088s
	1275		1378m*	1099s
	15/38		1418w*	1128m
	1414W		1423w	1356m
	1423m		1441m	1521w*
	1448w		-	2800w
	1634m		2852w	2897
	2852w		2911w	2957
	2899w		2968w	2757 W
	2955w			
			668w*	669*
$C_6H_4Cl_2$			10348	1025-m
			1456m	1055M
	1		1100111	1430III

* Bands are overlapped, w-weak intensity, m – middle intensity, s – strong intensity.

Fig. S1. IR spectra of starting H₃TPCor; salt {cryptand[2,2,2](Na⁺)}(H₂TPCor⁻)·0.5C₆H₄Cl₂ (**2**) with deprotonated H₂TPCor⁻ anions; complex (Cp*₂Cr⁺)(H⁺)·(H₂TPCor^{•2-})·C₆H₄Cl₂ (**1**) with the H₂TPCor^{•2-} radical dianions. Spectra were measured in KBr pellet prepared in anaerobic conditions.

Crystal structures

Fig. S2. Crystal structure of {cryptand[2,2,2](Na⁺)}(H₂TPCor⁻) \cdot 0.5C₆H₄Cl₂ (**2**) with deprotonated H₂TPCor⁻ anions. Solvent C₆H₄Cl₂ moleculeas are not shown for clarity.

Theoretical calculations.

Fig. S3. Calculated structure of the $H_2TPCor^{\bullet 2-}$ radical dianion.

Fig. S4. Temperature dependencies of *g*-factors (a) and linewidths (b) of two EPR signals from polycrystalline **1** attributed to the radical H₂TPCor^{\bullet 2-} dianions in the 4.2-292 K range.