Dalton Transactions

Electronic Supplementary Information (ESI)

Syntheses, crystal structures, DFT calculations, protein interaction and anticancer activities of water soluble dipicolinic acid - imidazole based oxidovanadium(IV) complexes

Debanjana Biswal^a, Nikhil Ranjan Pramanik^{*b}, Syamal Chakrabarti^{*a}, Michael G.B Drew^c, Krishnendu Acharya^d, Swarnendu Chandra^d

^aDepartment of Chemistry, University College of Science, 92, Acharya Prafulla Chandra Road, Kolkata:700009, West Bengal, India.

^bDepartment of Chemistry, Bidhannagar College, EB-2, Salt Lake, Kolkata: 700064, India.

^cDepartment of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK.

^dMolecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India.

Table of Contents:

- Fig. S1 Electronic spectra of complex 1 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.
- Fig. S2 Electronic spectra of complex 2 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.
- Fig. S3 Electronic spectra of complex 3 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.
- Fig. S4 EPR Spectrum of complex 2 at liquid nitrogen temperature.
- Fig. S5 EPR Spectrum of complex 3 at liquid nitrogen temperature.
- Fig. S6 Cyclic voltammogram of complex 2 in DMF at 298K
- Fig. S7 Cyclic voltammogram of complex 3 in DMF at 298K
- Fig. S8 TG-DT curve of complex 1 under N_2 atmosphere.
- Fig. S9 TG-DT curve of complex 2 under N_2 atmosphere.

- Fig. S10 TG-DT curve of complex 3 under N₂ atmosphere.
- Fig. S11 Diagrams showing the atoms taking part in H-bonding and the aromatic rings involved in $\pi \cdots \pi$ stacking interaction
- **Fig. S12** CD spectra of BSA $(1 \times 10^{-5} \text{ M})$ in the UV-region in the absence and presence of the complexes **1-3** $(2 \times 10^{-5} \text{ M})$ at 25°C and pH 7
- Fig. S13 Molecular docking image of complex 2 with BSA, residues surrounding the binding sites are highlighted.
- Fig. S14 Molecular docking image of complex 2 with BSA, residues surrounding the binding sites are highlighted.
- Table S1 CD secondary structure estimation of BSA in the absence and presence of complexes

 1-3 using CDNN Software
- **Table S2** Results of molecular docking: Adjacent residues and hydrogen bonding interactions

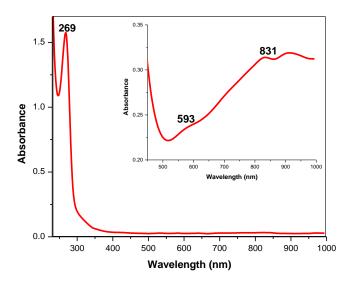


Fig. S1 Electronic spectra of complex 1 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.

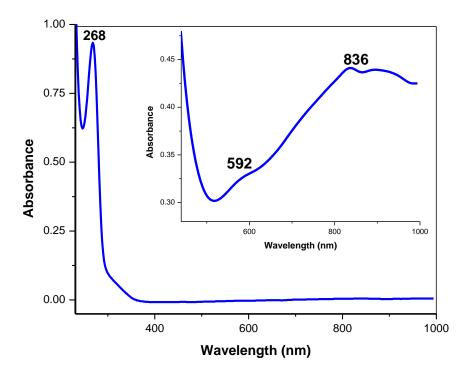


Fig. S2 Electronic spectra of complex 2 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.

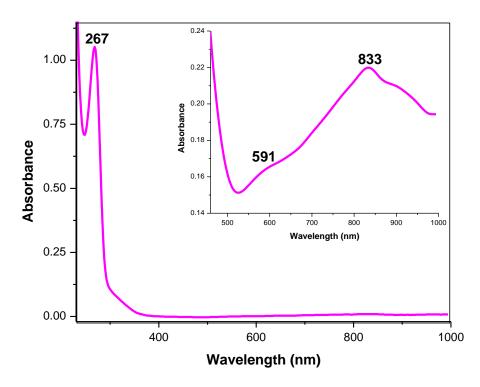


Fig. S3 Electronic spectra of complex 3 in water at room temperature. Inset: Peaks in the visible region obtained at higher complex concentration.

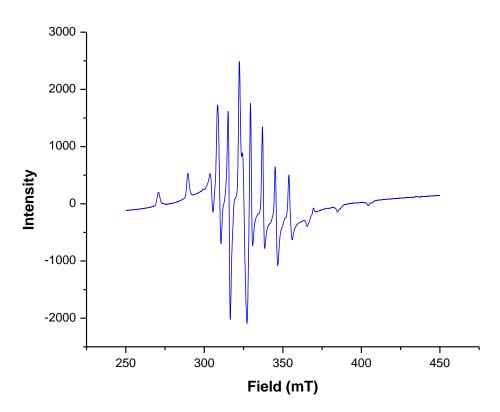


Fig. S4 EPR Spectrum of complex 2 at liquid nitrogen temperature.

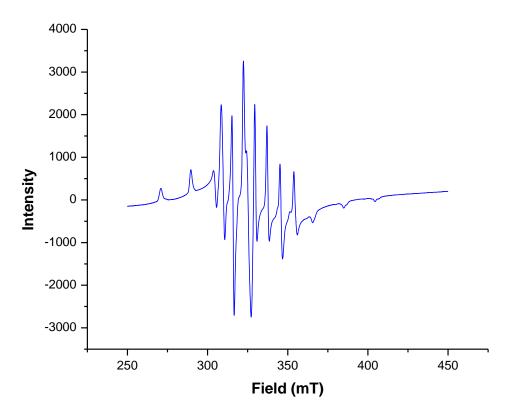


Fig. S5 EPR Spectrum of complex 3 at liquid nitrogen temperature

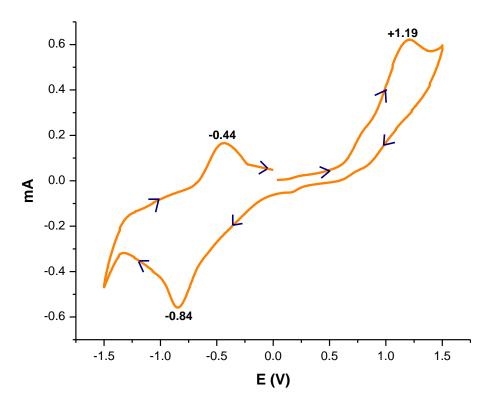


Fig. S6 Cyclic voltammogram of complex 2 in DMF at 298K

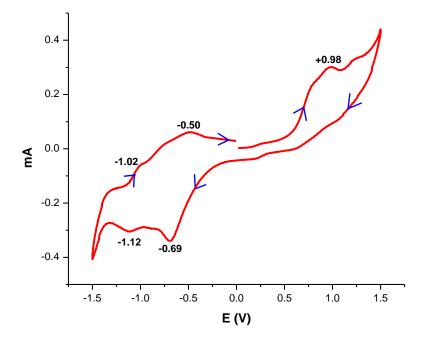


Fig. S7 Cyclic voltammogram of complex 3 in DMF at 298K

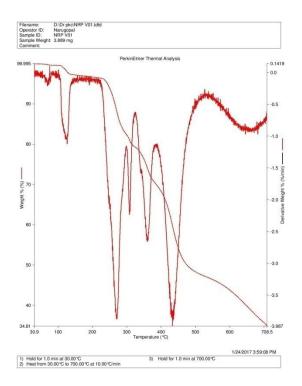


Fig. S8 TG-DT curve of complex 1 under $N_{\rm 2}$ atmosphere.

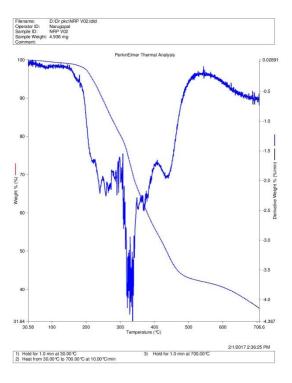


Fig. S9 TG-DT curve of complex 2 under N_2 atmosphere.

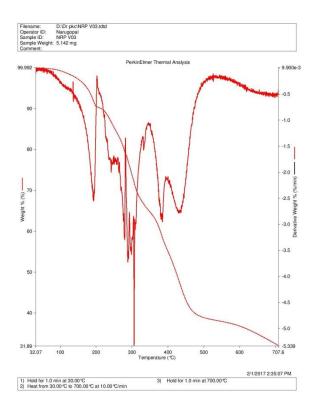
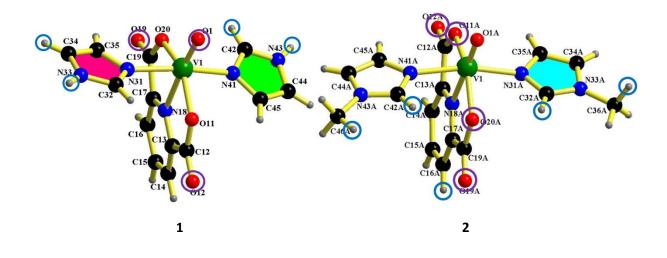



Fig. S10 TG-DT curve of complex 3 under N_2 atmosphere.

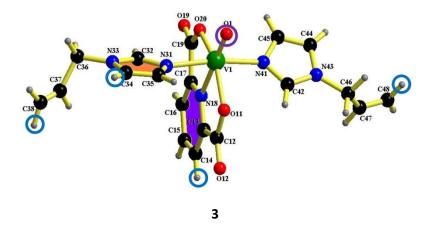


Fig. S11 Diagrams showing the atoms taking part in H-bonding and the aromatic rings involved in $\pi \cdots \pi$ stacking interaction

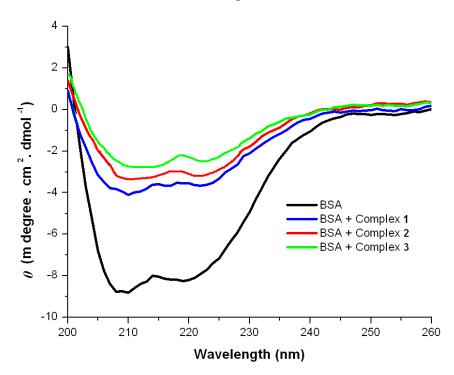


Fig. S12 CD spectra of BSA $(1 \times 10^{-5} \text{ M})$ in the UV-region in the absence and presence of the complexes 1-3 $(2 \times 10^{-5} \text{ M})$ at 25°C and pH 7

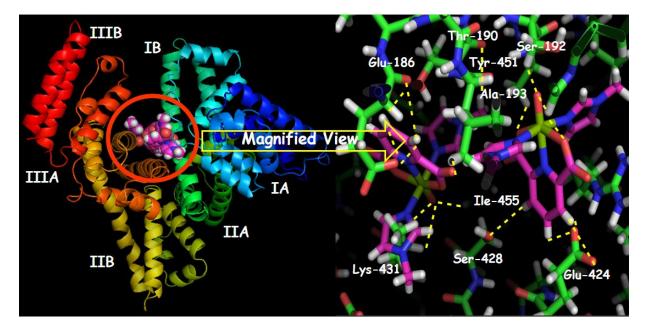


Fig. S13 Molecular docking image of complex 2 with BSA, residues surrounding the binding sites are highlighted.

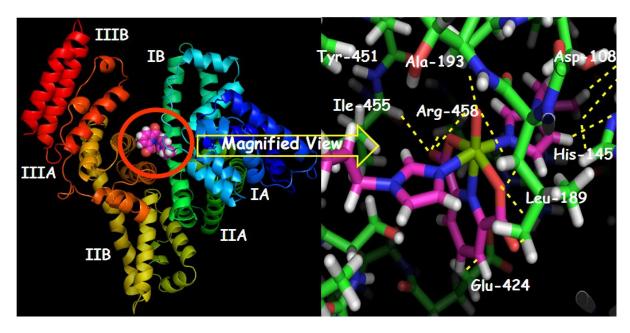


Fig. S14 Molecular docking image of complex 3 with BSA, residues surrounding the binding sites are highlighted.

Table S1

CD secondary structure estimation of BSA in the absence and presence of complexes 1-3 using CDNN Software

Components conformation	Free BSA (1 × 10 ⁻⁵ M)	BSA + Complex 1 (2 × 10 ⁻⁵ M)	BSA + Complex 2 (2 × 10 ⁻⁵ M)	BSA + Complex 3 (2 × 10 ⁻⁵ M)
α-Helix (%)	85.0	38.5	31.7	24.7
β-sheet (Antiparallel) (%)	1.3	7.3	9.0	11.6
β-sheet (Parallel) (%)	1.5	7.3	9.2	11.5
β-Turn (%)	9.3	16.1	17.2	18.6
Random Coil (%)	7.0	27.9	33.5	40.0

Table S2

Results of molecular docking: Adjacent residues and hydrogen bonding interactions

Complex	Hydrogen bonding interactions	Adjacent amino acids
BSA…Complex 1	$(Tyr-160)Ph-O-H\cdots O=V = 2.2 Å$ $(Tyr-160)Ph-H\cdots O=V = 2.9 Å$ $(Tyr-137)Ph-H\cdots O-V=O 2.4 Å$ $(Tyr-137)Ph-H\cdots O=C-O-V = 2.4 Å$ $(Ile-141)-CH_2-H\cdots O=C-O-V = 1.3 Å$ $(Lys-136)HO-C=O\cdots H-(Imz)-V = 2.9 Å$	Tyr-160, Tyr-137, Lys-136, Glu-140, Leu-115, Lys-116, Pro-117, Glu-182, Leu-122
BSA…Complex 2	$(Ile-455)-CH_2-H\cdots O=V = 2.7 \text{ Å}$ $(Lys-431)-CH-H\cdots O=V = 2.7, 2.9 \text{ Å}$ $(Arg-458)-C-H\cdots O=C-O-V = 2.8 \text{ Å}$ $(Leu-189)-C-C-H\cdots O=C-O-V = 2.8 \text{ Å}$ $(Glu-186)-CH_2-C-O\cdots H-(Py) = 2.7, 2 \text{ Å}$ $(Glu-186)-C-C-O\cdots H-(Py) = 3, 2.5 \text{ Å}$ $(Ser-192)-C-H\cdots O=V = 1.7 \text{ Å}$ $(His-145)-Imz-H\cdots O=V = 2.8 \text{ Å}$ $(Ala-193)-C-CH_2-H\cdots O-V=O = 2.9 \text{ Å}$ $(Glu-424)-H_2C-C-O\cdots H-(Py) = 1.7, 1.5, 2.4 \text{ Å}$ $(Thr-190)-NH_2-C-C-O\cdots H-CH_2-(1-methimz) = 3\text{\AA}$	Ile-455, Lys-431, Arg-458, Glu-186, Leu-189, Ser-192, His-145, Thr-190, Glu-424, Ala-193, Tyr-451
BSA…Complex 3	$(Ala-193)-CH_2-H\cdots O=V = 2.2 \text{ Å}$ $(Leu-189)-CH_2-H\cdots O=V = 3.0 \text{ Å}$ $(Leu-189)-C-H\cdots O-V=O = 2.2, 2.9 \text{ Å}$ $(Leu-189)-C-H\cdots O=C-O-V = 1.8 \text{ Å}$ $(Glu-424)-C-O\cdots H-(Py) = 2.9 \text{ Å}$ $(Arg-458)-CH-H\cdots O=C-O-V = 2.7, 2.9 \text{ Å}$ $(Ile-455)-CH_2-H\cdots O=C-O-V = 2.6 \text{ Å}$ $(His-145)-Imz-N\cdots H-(1-allylimz) = 2.8 \text{ Å}$ $(Asp-108)-C-O\cdots H-CH=CH-CH_2-N-(1-allylimz) = 3, 2.6, 2.9 \text{ Å}$	Ala-193, Leu-189, Glu-424, Arg-458, Ile-455, His-145, Asp-108