Electronic Supporting Information

Effects of Er3+ Spatial Distribution on Luminescent Properties and Temperature Sensing of Upconverting Core-Shell Nanocrystals with High Er3+ Content

Daqin Chen a,*, Min Xu a, Mengfan Ma a, Ping Huang b,*

a College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China

b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
Figure S1 TEM images of xYb: NaEr_{1-x}F_{4} NCs: (a) x=0, (b) x=0.2, (c) x=0.4, (d) x=0.6, (e) x=0.8, (f) x=0.99.
The synthetic procedure for cubic 60Yb: NaErF₄ NCs is provided as follows. Firstly, a total amount of 0.8 mmol rare earth chlorides, including ErCl₃·6H₂O (0.32 mmol) and YbCl₃·6H₂O (0.48 mmol), were added in a 100 mL three-necked bottle containing 8 mL OA and 12 mL ODE, which was heated at 150 °C for 60 min to form a clear solution. Subsequently, the transparent solution was cooled to room temperature naturally. Afterwards, the 5 mL methanol solution containing NH₄F (3 mmol) and NaOH (1 mmol) was introduced into the resulted solution with stirring for 50 min to evaporate the methanol. Finally, the temperature was quickly elevated to 280 °C under N₂ atmosphere and hold for 60 min. The as-prepared solution was cooled down to room temperature and the NCs were precipitated by addition of ethanol, collected by centrifugation (10000 r/min, 5 min), washed with the help of ethanol and chloroform, and re-dispersed in 3 mL cyclohexane.

Figure S2 TEM image of cubic 60Yb: NaErF₄ NCs
Figure S3 Normalized UC emission spectra for 60Yb: NaErF$_4$ core NCs and 60Yb: NaErF$_4$@NaYF$_4$ core-shell NCs under 980 nm laser excitation.