Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Info

Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents

Zandria Lamprecht,^a Shankara Radhakrishnan,^a Alexander Hildebrandt,^b Heinrich Lang,^b David C. Liles,^a Noraann Weststrate,^a, and Simon Lotz^a and Daniela I. Bezuidenhout,^{a,c*}

^{a.} Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.

^{b.} Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany.

^{c.} Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.

Contents:

Figure S1: Atom numbering scheme used in NMR spectral assignment.	S4
Figure S2: ¹ H NMR spectrum of 1a in CDCl ₃	S5
Figure S3: ¹³ C NMR spectrum of 1a in CDCl ₃	S5
Figure S4: 2D [¹ H, ¹³ C] HSQC NMR spectrum of 1a in CDCl ₃	S6
Figure S5: ¹ H NMR spectrum of 2a in CDCl ₃	S6
Figure S6: ¹³ C NMR spectrum of 2a in CDCI ₃	S7
Figure S7: ¹ H NMR spectrum of 3a in CDCl ₃	S7
Figure S8: ¹³ C NMR spectrum of 3a in CDCI ₃	S8
Figure S9: 2D [¹ H, ¹³ C] HSQC NMR spectrum of 3a in CDCl ₃	S8
Figure S10: ¹ H NMR spectrum of 4a in CDCl ₃	S9
Figure S11: ¹³ C NMR spectrum of 4a in CDCl ₃	S9
Figure S12: ¹ H NMR spectrum of 5a in CDCl ₃	S10
Figure S13: ¹³ C NMR spectrum of 5a in CDCl ₃	S10
Figure S14: 2D [¹ H, ¹³ C] HSQC NMR spectrum of 5a in CDCl ₃ .	S11
Figure S15: ¹ H NMR spectrum of 1b in CDCl ₃	S11
Figure S16: ¹³ C NMR spectrum of 1b in CDCl ₃	S12
Figure S17: 2D [¹ H, ¹³ C] HSQC NMR spectrum of 1b in CDCl ₃ .	S12
Figure S18: ¹ H NMR spectrum of 3b in CDCl ₃	S13
Figure S19: ¹³ C NMR spectrum of 3b in CDCl ₃	S13
Figure S20: 2D [¹ H, ¹³ C] HSQC NMR spectrum of 3b in CDCl ₃ .	S14
Figure S21: Cyclic voltammograms of 1a at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S15
Figure S22: Cyclic voltammograms of 2a at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S15
Figure S23: Cyclic voltammograms of 3a at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S15
Figure S24: Cyclic voltammograms of 5a at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S16
Figure S25: Cyclic voltammograms of 1b at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S16
Figure S26: Cyclic voltammograms of 3b at positive potentials (red) and negative potentials (blue), at a glassy carbon	
electrode, scan rate 0.1 Vs ⁻¹ in CH ₂ Cl ₂ with the internal standard marked as FcH	S16
Figure S27: SEC-IR of 1a upon reduction. Red: neutral compound; blue: reduced compound	S17
Figure S28: SEC-IR of 3a upon reduction. Red: neutral compound; blue: reduced compound	S17
Figure S29: Intramolecular and intermolecular interactions found in the crystal packing of 3a and 3b	S18
Table S1: Crystal data and structure refinement for complexes 1a, 2a, 3a, 5a, 1b and 3b.	S19
Table S2: Chemical potential (μ), hardness/MO energy gap (η) and electrophilicity index (ω) reported in eV for 1a , 1b ,	3a
and 3b	S20
Table S3: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1a.	S21
Figure S30: Normal Transition orbitals (NTOs) for the major absorption bands of 1a.	S21
Figure S31: Normal Transition orbitals (NTOs) for the major absorption bands of 1a ⁻	S22
Figure S32: Spin population of $1a^{-}$ and $1a^{+}$ on the left and right hand side respectively.	S22
Table S4: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1b	S23
Figure S33: Normal Transition orbitals (NTOs) for the major absorption bands of 1b .	S23
Figure S34: Normal Transition orbitals (NTOs) for the major absorption bands of 1b ⁻	S24
Figure S35: Spin population of $1b^-$ and $1b^+$ on the left and right hand side respectively	S24
Figure S36: Changes in UV-Vis absorption spectrum of 2a during the reduction event in CH_2Cl_2 containing 0.1 M	
$N^{n}Bu_{4}[B(C_{6}F_{5})_{4}]$ electrolyte, applied voltage range: -1.1 to -1.4 V; The inset shows the appearance of a 1600 nm	
Intervalence charge transfer (IVCT) feature at an applied voltage -1.4 V. (Legend: Increasing cathodic voltages from bla	ack to
light green)	S25

 $X = Re(CO)_5$, Br, Cl

Figure S1: Atom numbering scheme used in NMR spectral assignment.

Figure S2: ¹H NMR spectrum of 1a in CDCl₃.

Figure S3: ¹³C NMR spectrum of **1a** in CDCl₃.

Figure S4: 2D [¹H, ¹³C] HSQC NMR spectrum of **1a** in CDCl₃.

Figure S5: ¹H NMR spectrum of **2a** in CDCl₃.

Figure S6: ¹³C NMR spectrum of **2a** in CDCl₃.

Figure S7: ¹H NMR spectrum of **3a** in CDCl₃.

Figure S8: ¹³C NMR spectrum of **3a** in CDCl₃.

Figure S9: 2D [¹H, ¹³C] HSQC NMR spectrum of **3a** in CDCl₃.

Figure S10: ¹H NMR spectrum of 4a in CDCl₃.

Figure S11: ¹³C NMR spectrum of 4a in CDCl₃.

Figure S12: ¹H NMR spectrum of 5a in CDCl₃.

Figure S13: ¹³C NMR spectrum of 5a in CDCl₃.

Figure S14: 2D [¹H, ¹³C] HSQC NMR spectrum of 5a in CDCl₃.

Figure S15: 1 H NMR spectrum of **1b** in CDCl₃.

Figure S16: ¹³C NMR spectrum of **1b** in CDCl₃.

Figure S17: 2D [¹H, ¹³C] HSQC NMR spectrum of 1b in CDCl₃.

Figure S18: ¹H NMR spectrum of **3b** in CDCl₃.

Figure S19: ¹³C NMR spectrum of **3b** in CDCl₃.

Figure S20: 2D $[^{1}H, ^{13}C]$ HSQC NMR spectrum of **3b** in CDCl₃.

Figure S21: Cyclic voltammograms of **1a** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs⁻¹ in CH₂Cl₂ with the internal standard marked as FcH.

Figure S22: Cyclic voltammograms of **2a** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs^{-1} in CH₂Cl₂ with the internal standard marked as FcH.

Figure S23: Cyclic voltammograms of **3a** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs^{-1} in CH₂Cl₂ with the internal standard marked as FcH.

Figure S24: Cyclic voltammograms of **5a** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs⁻¹ in CH₂Cl₂ with the internal standard marked as FcH.

Figure S25: Cyclic voltammograms of **1b** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs^{-1} in CH₂Cl₂ with the internal standard marked as FcH.

Figure S26: Cyclic voltammograms of **3b** at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs^{-1} in CH₂Cl₂ with the internal standard marked as FcH.

Figure S27: SEC-IR of 1a upon reduction. Red: neutral compound; blue: reduced compound.

Figure S28: SEC-IR of 3a upon reduction. Red: neutral compound; blue: reduced compound.

Figure S29: Intramolecular and intermolecular interactions found in the crystal packing of 3a and 3b.

	1a	2a	3a	5a	1b	3b
Empirical formula	$C_{18}H_8O_{10}Re_2S_2$	$C_{30}H_{12}O_{20}Re_4S_2$	$C_{13}H_8BrO_5ReS_2$	C ₁₃ H ₉ CINO ₄ ReS ₂	$C_{18}H_8O_{10}Re_2S_2$	$C_{13}H_8BrO_5ReS_2$
Formula weight	820.76	1501.32	574.42	528.98	820.76	574.42
Temperature/K	150(2)	150(2)	150(2)	294(2)	150(2)	150(2)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	P21/c	P2 ₁ /n	P2 ₁ /c	P2 ₁	P2 ₁ /n	P212121
a/Å	9.6980(5)	10.1212(7)	17.2340(9)	6.5331(8)	9.6861(4)	7.3951(4)
b/Å	13.1478(6)	13.5273(11)	6.4087(4)	11.7969(16)	12.7974(5)	14.2116(10)
c/Å	17.4834(9)	14.1208(12)	16.2660(8)	10.8497(15)	17.8103(8)	15.5998(11)
α/°	90	90	90	90	90	90
β/°	106.099(2)	96.857(4)	116.6180(17)	91.742(5)	104.336(2)	90
γ/°	90	90	90	90	90	90
Volume/Å ³	2141.84(19)	1919.5(3)	1606.13(15)	835.80(19)	2138.96(16)	1639.48(19)
Z	4	2	4	2	4	4
$\rho_{calc}g/cm^3$	2.545	2.598	2.376	2.102	2.549	2.327
µ/mm⁻¹	11.542	12.76	10.331	7.692	11.557	10.121
F(000)	1512	1368	1072	500	1512	1072
Crystal size/mm ³	0.314 × 0.263 × 0.216	0.360 × 0.080 × 0.040	0.194 × 0.169 × 0.163	0.219 × 0.183 × 0.101	0.210 × 0.190 × 0.170	0.380 × 0.260 × 0.220
Dediction	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Kaulation	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)
20 range for data collection/°	4.85 to 63.298	4.696 to 54.198	5.01 to 65.296	5.102 to 54.2	4.398 to 61.014	5.222 to 56.694
	-14 ≤ h ≤ 14,	-12 ≤ h ≤ 12,	-26 ≤ h ≤ 26,	-8 ≤ h ≤ 8,	-13 ≤ h ≤ 13,	-9 ≤ h ≤ 9,
Index ranges	-19 ≤ k ≤ 19,	-17 ≤ k ≤ 17,	-9 ≤ k ≤ 9,	-15 ≤ k ≤ 15,	-18 ≤ k ≤ 18,	-18 ≤ k ≤ 18,
	-25 ≤ l ≤ 25	-18 ≤ I ≤ 18	-24 ≤ l ≤ 24	-13 ≤ I ≤ 13	-25 ≤ l ≤ 25	-20 ≤ l ≤ 20
Reflections collected	110751	16102	84514	17956	99281	78470
Independent	7210	4222	5897	3683	6527	4087
reflections	$[R_{int} = 0.1020,$ $R_{int} = 0.0438]$	$[R_{int} = 0.0608,$ $R_{int} = 0.0412]$	$[R_{int} = 0.0828,$ R = 0.0389]	$[R_{int} = 0.0725,$ $R_{int} = 0.0677]$	$[R_{int} = 0.0947,$ R = 0.0368]	$[R_{int} = 0.0950,$ R = 0.0322]
Data/restraints/	7210/0/291	4222/0/290	5897/0/200	3683/51/224	6527/0/290	4087/12/201
Goodness-of-fit on F ²	1.061	1.061	1.06	0.94	1.066	1.178
Final R indexes [I>=2σ (I)]	$R_1 = 0.0296,$ w $R_2 = 0.0665$	$R_1 = 0.0303,$ w $R_2 = 0.0563$	$R_1 = 0.0315,$ w $R_2 = 0.0487$	$R_1 = 0.0354,$ w $R_2 = 0.0565$	$R_1 = 0.0247,$ w $R_2 = 0.0497$	$R_1 = 0.0269,$ w $R_2 = 0.0612$
Final R indexes [all data]	$R_1 = 0.0432,$ w $R_2 = 0.0713$	$R_1 = 0.0396,$ w $R_2 = 0.0589$	$R_1 = 0.0468,$ w $R_2 = 0.0520$	$R_1 = 0.0574,$ w $R_2 = 0.0623$	$R_1 = 0.0359,$ w $R_2 = 0.0531$	$R_1 = 0.0287,$ $wR_2 = 0.0617$
Largest diff. peak/hole / e Å ⁻³	1.64/-1.99	0.98/-1.43	1.50/-1.73	1.16/-0.61	1.21/-1.88	0.98/-2.15
Flack parameter				0.025(17)		0.406(13)
CCDC No.	1554899	1554895	1554898	1554896	1554900	1554897

 Table S1: Crystal data and structure refinement for complexes 1a, 2a, 3a, 5a, 1b and 3b.

Table S2: Chemical potential (μ), hardness/MO energy gap (η) and electrophilicity index (ω) reported in eV for **1a**, **1b**, **3a** and **3b**.

	1a	1b	3a	3b
E _{LUMO}	-3.3214235	-3.3861866	-3.3616964	-3.4561199
Е _{номо}	-6.3603926	-6.3620253	-6.4657008	-6.4363124
μ	-4.84090805	-4.87410595	-4.9136986	-4.94621615
η	3.0389691	2.9758387	3.1040044	2.9801925
ω	7.7112962	7.983265	7.7784793	8.209219

 Table S3: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1a.

	Major Contributing Excitation (%)	Transition energy (nm)	Oscillator Strength	λ _{exp} (nm)	ε _{exp} (M ⁻¹ cm ⁻¹)
1a	HOMO \rightarrow LUMO (98)	493	0.223	450	14835
	HOMO−1→LUMO (80) HOMO →LUMO+3 (12)	393	0.219	390	12265
	HOMO→LUMO+1 (29) HOMO→LUMO+3 (49)	341	0.228	320	20995
(1a) [−]	HOMOα→LUMO+7α (32) HOMOα→LUMO+8α (51)	538	0.0187	540	315
	ΗΟΜΟα→LUMO+12α (20), ΗΟΜΟβ→LUMOβ (17), ΗΟΜΟβ→LUMO+3β (19)	403	0.1039	390	6100

Figure S30: Normal Transition orbitals (NTOs) for the major absorption bands of 1a.

Figure S31: Normal Transition orbitals (NTOs) for the major absorption bands of 1a⁻.

Figure S32: Spin population of $1a^-$ and $1a^+$ on the left and right hand side respectively.

	Major Contributing Excitation (%)	Transition energy (nm)	Oscillator Strength	λ _{exp} (nm)	ε _{exp} (M ⁻¹ cm ⁻¹)
1b	HOMO→LUMO (99)	497	0.2773	455	14165
	H-1→LUMO (82)	406	0.3036	395	12546
	H-5→LUMO (10) HOMO→L+1 (14) HOMO→L+3 (50)	338	0.1797	322	18907
(1b) ⁻	HOMO(A) →L+5(A) (57) HOMO(A) →L+8(A) (10) HOMO(A)->L+9(A) (10)	528	0.0126	540	391
	$H-1(A) \rightarrow L+1(A)$ (14) HOMO(A) $\rightarrow L+8(A)$ (14) HOMO(B) $\rightarrow LUMO(B)$ (19) HOMO(B) $\rightarrow L+2(B)$ (35)	434	0.1213	405	18793

 Table S4: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1b.

Figure S33: Normal Transition orbitals (NTOs) for the major absorption bands of 1b.

ΗΟΜΟβ

Figure S34: Normal Transition orbitals (NTOs) for the major absorption bands of 1b⁻.

Figure S35: Spin population of $\mathbf{1b}^-$ and $\mathbf{1b}^+$ on the left and right hand side respectively.

Figure S36: Changes in UV-Vis absorption spectrum of **2a** during the reduction event in CH_2Cl_2 containing 0.1 M $N^n Bu_4[B(C_6F_5)_4]$ electrolyte, applied voltage range: -1.1 to -1.4 V; The inset shows the appearance of a 1600 nm Intervalence charge transfer (IVCT) feature at an applied voltage -1.4 V. (Legend: Increasing cathodic voltages from black to light green)

Figure S37: Changes in UV-Vis absorption spectrum of **3a** during the reduction event in CH_2Cl_2 containing 0.1 M $N^n Bu_4[B(C_6F_5)_4]$ electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light green)

Figure S38: Changes in UV-Vis absorption spectrum of **3b** during the reduction event in CH_2Cl_2 containing 0.1 M $N^n Bu_4[B(C_6F_5)_4]$ electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light green)