Supplementary Information

A study of the Group 1 metal tetra-aza macrocyclic complexes [M(Me₄cyclen)(L)]⁺ using electronic structure calculations

(M = Li, Na, and K; L = H₂O, THF, DEE, MeOH, and DCM)

Hanusha Bhakhoa,¹ Lydia Rhyman,^{1,2} Edmond P. Lee,^{3,4} Daniel K. W. Mok,⁴ Ponnadurai Ramasami^{1,2*} and John M. Dyke^{3*}

¹Computational Chemistry Group, Department of Chemistry, University of Mauritius, Réduit 80837, Mauritius
²Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, South Africa
³School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
⁴Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Corresponding Author(s) *E-mails: p.ramasami@uom.ac.mu (P.R.); jmdyke@soton.ac.uk (J.M.D.)

Further information on computational detailsS4-6B3LYP optimised lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS7Further information on $[M(Me_4cyclen)]^+$ and $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS8-12Selected geometrical parameters of $[M(Me_4cyclen)]^+$ S8Further information on low-lying $[M(Me_4cyclen)]^+$ S1Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L]$, $[M(Me_4cyclen)]^+, [M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structuresS47-56Further information on computed IR spectraS57-58$	Table of Contents	SI Page no.
B3LYP optimised lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS7Further information on $[M(Me_4cyclen)]^+$ and $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS8-12Selected geometrical parameters of $[M(Me_4cyclen)]^+$ S8Further information on low-lying $[M(Me_4cyclen)(L)]^+$ structuresS12Optimised low-lying $[M(Me_4cyclen)(L)]^+$ structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L],$ [M(Me_4cyclen)]^+, $[M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structuresS47-56Further information on computed IR spectraS57-58$	Further information on computational details	S4-6
Furtherinformationon $[M(Me_4cyclen)]^+$ and $[M(Me_4cyclen)(L)]^+$ minimumenergy structuresS8-12Selected geometrical parameters of $[M(Me_4cyclen)(L)]^+$ structuresS12Optimised low-lying $[M(Me_4cyclen)(L)]^+$ structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresSelected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ S29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ andS33-34Furtherinformation on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L]$,S47-56Further information on computed IR spectraS57-58	B3LYP optimised lowest [M(Me ₄ cyclen)(L)] ⁺ minimum energy structures	S7
Selected geometrical parameters of $[M(Me_4cyclen)]^+$ S8Further information on low-lying $[M(Me_4cyclen)(L)]^+$ structuresS12Optimised low-lying $[M(Me_4cyclen)(L)]^+$ structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L]$, $[M(Me_4cyclen)]^+, [M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structuresS47-56Further information on computed IR spectraS57-58$	Further information on $[M(Me_4cyclen)]^+$ and $[M(Me_4cyclen)(L)]^+$ minimum energy structures	S8-12
Further information on low-lying $[M(Me_4cyclen)(L)]^+$ structuresS12Optimised low-lying $[M(Me_4cyclen)(L)]^+$ structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L]$, $[M(Me_4cyclen)]^+, [M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structuresS47-56Further information on computed IR spectraS57-58$	Selected geometrical parameters of [M(Me ₄ cyclen)] ⁺	S8
Optimised low-lying $[M(Me_4cyclen)(L)]^+$ structuresS13-28Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen, [M^+-L]$, $[M(Me_4cyclen)]^+, [M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structuresS47-56Further information on computed IR spectraS57-58$	Further information on low-lying [M(Me ₄ cyclen)(L)] ⁺ structures	S12
Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structuresS29-32Optimised structures and selected geometrical parameters of $Me_4cyclen$ and $[Me_4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, $Me_4cyclen$, $[M^+-L]$, $[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58	Optimised low-lying [M(Me ₄ cyclen)(L)] ⁺ structures	S13-28
Optimised structures and selected geometrical parameters of Me4cyclen and $[Me4cyclenH]^+$ S33-34Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, Me4cyclen, $[M^+-L]$, $[M(Me4cyclen)]^+$, $[M(Me4cyclen)(L)]^+$, and $[Me4cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58Cancel L B, and L b	Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures	\$29-32
Further information on $[M^+-L]$ structuresS35-36Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, Me_4cyclen, $[M^+-L]$,S47-56Further information on computed IR spectraS57-58Computed LB process of L and L a	Optimised structures and selected geometrical parameters of Me_4 cyclen and $[Me_4$ cyclen $H]^+$	\$33-34
Optimised $[M^+-L]$ structuresS37Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, Me_4cyclen, $[M^+-L]$, $[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58	Further information on [M ⁺ -L] structures	S35-36
Optimised DEE structuresS37Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, Me₄cyclen, $[M^+-L]$, $[M(Me₄cyclen)]^+$, $[M(Me₄cyclen)(L)]^+$, and $[Me₄cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58Computed LDP and the data data data data data data data dat	Optimised [M ⁺ -L] structures	S37
Selected geometrical parameters of the $[M^+-L]$ structuresS38-45Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46Computed charge densities on selected centres of L, Me_4cyclen, $[M^+-L]$, $[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58Computed LB process of L and the tent process of L and tent pr	Optimised DEE structures	S37
Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$ S46 Computed charge densities on selected centres of L, Me ₄ cyclen, $[M^+-L]$, $[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structures S47-56 Further information on computed IR spectra S57-58	Selected geometrical parameters of the [M ⁺ -L] structures	S38-45
Computed charge densities on selected centres of L, Me4cyclen, $[M^+-L]$, $[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structuresS47-56Further information on computed IR spectraS57-58	Calculated energies for the dissociation process, $[M^+-L] \rightarrow M^+ + L$	S46
$[M(Me_4cyclen)]^+, [M(Me_4cyclen)(L)]^+, and [Me_4cyclenH]^+ structures S47-56$ Further information on computed IR spectra S57-58	Computed charge densities on selected centres of L, Me ₄ cyclen, [M ⁺ -L],	
Further information on computed IR spectra S57-58 Computed IR spectra S57-58	$[M(Me_4cyclen)]^+$, $[M(Me_4cyclen)(L)]^+$, and $[Me_4cyclenH]^+$ structures	S47-56
	Further information on computed IR spectra	S57-58
Computed IR spectra and selected assignments of vibrational modes for $D(t+1) = D(t) = D(t+1)$	Computed IR spectra and selected assignments of vibrational modes for	
$[M^{-}L]$, $[M(Me_4cyclen)]^{+}$, $[M(Me_4cyclen)(L)]^{+}$, $Me_4cyclen$, and $[Me_4cyclenH]^{+}$ structures S59-69	$[M^{+}-L]$, $[M(Me_4cyclen)]^{+}$, $[M(Me_4cyclen)(L)]^{+}$, $Me_4cyclen$, and $[Me_4cyclenH]^{+}$ structures	859-69

Calculated energies for the dissociation process, $[M(Me_4cyclen)(L)]^+ \rightarrow$	
$[M(Me_4cyclen)]^+ + L$	S70
Discussion of the ansatz options for the DF-LCCSD(T)-F12x calculations	S71
Discussion of basis set effects on the DF-LCCSD(T) and DF-LCCSD(T)-	
F12x calculations	S72-73
Comparison between the DF-LCCSD(T)-F12x/DZ-F12//BP86/6-	
311G(d,p) and DF-LCCSD(T)-F12x/DZ-F12//B3LYP/6-311G(d,p) BDEs	
obtained using two different ansatz options, (Fix,NoX) and (Loc,Fix)	S74-75
Comparison of BDEs of the BP86 and B3LYP lowest [M(Me ₄ cyclen)(L)] ⁺	
minimum energy structures calculated using the DF-LCCSD(T)/nZ and DF-	
LCCSD(T)-F12x/nZ-F12x methods	S76-79
Optimised structure and selected geometrical parameters of K ⁺ complexes	
of cyclen derivatives 1c and 1d	S80-81
Optimised structure and selected geometrical parameters of	
[K(Me ₄ cyclen)][HBPh ₃]	S82-83
Atom coordinates and total electronic energies of the complexes studied in	
this work	S84-158
References	S159-161

Further information on computational details

The DFT functionals BP86^{S1} and B3LYP^{S2} were used to perform geometry optimisations for all the chemical species investigated in this work.^{S3} The 6-311G(d,p) basis set^{S4} was employed for the atoms H, C, N, O, Cl, Li, Na, and K. The functionals were selected, with the 6-311G(d,p) basis set, based on results of our recent studies on alkali metal ion-macrocyclic complexes.^{S5} Geometry optimisation was followed by analytic Hessian computation at the same levels of theory, and the absence of negative Hessian eigenvalues confirmed the stationary points as minima on the potential energy hypersurfaces. Bond dissociation energies (BDEs) were calculated for the process, $[M(Me_4cyclen)(L)]^+ \rightarrow [M(Me_4cyclen)]^+ + L$, where M = Li, Na, K, and $L = H_2O$, THF, DEE, MeOH, DCM, using these functionals with the 6-311G(d,p) basis set.^{S6} Basis set superposition error (BSSE) correction, as implemented by the Boys-Bernardi counterpoise method,^{S7} and zero-point energy (ZPE) correction were included in the BDEs. Reported relative energies are given at 298.15 K and 1 atm. All density functional computations were performed using the Gaussian 09 package.^{S8} Natural bond orbital (NBO) analysis^{S9} was also carried out using the NBO program as implemented in the Gaussian 09 package.^{S10} Throughout this work, [M(Me₄cyclen)(L)]⁺ structures optimised with the BP86 functional are denoted M-L-1a and those optimised with the B3LYP functional are denoted M-L-2a.

High level *ab initio* methods were employed to assess the performance of the DFT calculations and to obtain more reliable BDEs.^{S5b,S11} Single-point DF-LCCSD(T)^{S12} and explicitly correlated DF-LCCSD(T)-F12x (x = a, b)^{S13} calculations were performed at the BP86/6-311G(d,p) and B3LYP/6-311G(d,p) lowest minimum energy geometries of Me₄cyclen, [M(Me₄cyclen)]⁺, [M(Me₄cyclen)(L)]⁺, L, [Me₄cyclenH]⁺, H₂O, and H₃O⁺ using the MOLPRO 2010.1 and 2015.1 programs.^{S14} All DF-LCCSD(T) and DF-LCCSD(T)-F12x calculations were preceded by a density fitted Hartree-Fock (HF) calculation.^{S15} The local correlation methods together with the density fitting (DF) approximation allow the efficient treatment of larger molecules. The inclusion of explicitly correlated terms accounts for basis set incompleteness and domain approximation associated errors.^{S12,S13}

The first step in the DF-LCCSD(T)-F12x calculations involves DF-LMP2-F12 calculations which were performed using the 3*A ansatz approximation as detailed in reference S16. Two sets of ansatz options, namely (Loc,Fix) and (Fix,NoX) were used, the former being the default for DF-LCCSD(T)-F12x calculations.^{S16,S17} The (Fix,NoX) ansatz option was used to avoid

unreasonable BDE values obtained with the (Loc,Fix) option for calculations involving chlorine atoms (i.e. in calculations with L = DCM) (*vide infra*).

In the DF-LCCSD(T) calculations, the aug-cc-pVDZ atomic orbital (AO) basis set^{S18} was employed in conjunction with the aug-cc-pVDZ/MP2FIT^{S19} and aug-cc-pVDZ/JKFIT auxiliary basis sets (ABS)^{S20} for the H, C, N, O, and Cl atoms. The corresponding DF-LCCSD(T)-F12x calculation uses cc-pVDZ-F12 as the AO basis set^{S21} and cc-pVDZ-F12/OPTRI as the complementary auxiliary basis set (CABS).^{S22} For Li/Na, the aug-cc-pwCVDZ^{S23} and cc-pCVDZ-F12^{S24} AO basis sets were used in the DF-LCCSD(T) and DF-LCCSD(T)-F12x calculations, respectively. The aug-cc-pwCVDZ/MP2FIT^{S24} def2-QZVPP/JKFIT^{S25} and cc-pCVDZ-F12/OPTRI^{S24} basis sets were chosen as the ABS and the CABS, respectively. The 1s orbital on Li⁺ and the 2s and 2p orbitals on Na⁺ were considered to be valence as in our previous work.^{S5b} The double-ζ quality basis sets used in the DF-LCCSD(T) and DF-LCCSD(T)-F12x calculations are denoted in the text as DZ and DZ-F12, respectively.

High level single-point calculations with the aug-cc-pVTZ basis set^{S18,S19a,S20} on the complexes studied, which consist of a maximum of 60 atoms, failed because the maximum CPU time allowed was exceeded. Thus, the def2-TZVPP basis set,^{\$26} which is slightly smaller (with respect to the aug-cc-p-VTZ basis set) but is a well-balanced triple- ζ AO basis set,^{S27} was used along with the associated default ABS (def2-TZVPP/MP2FIT^{S28} and def2-TZVPP/JKFIT)^{S25} and/or the CABS (def2-TZVPP/OPTRI)^{S29} for the H, C, N, O, and Cl atoms. Def2-TZVPP was employed as the triple- ζ AO basis set for Li and Na.^{S26} In the DF-LCCSD(T) calculation, the def2-TZVPP AO basis set was augmented with the following uncontracted functions, namely, two s (ζ = 5.0134, 1.6427), two p (ζ = 4.2222, 0.93), and one d (ζ = 0.85) for Li and two s (ζ = 4.2353, 0.6984), two p ($\zeta = 1.1907$, 0.3846), two d ($\zeta = 3.4561$, 0.7449), and one f ($\zeta = 3.227$) for Na. In the DF-LCCSD(T)-F12x calculation, the def2-TZVPP AO basis set was augmented with a set of spd(f) functions, with exponents of $\zeta_s = 0.406129$, $\zeta_p = 1.37526$, and $\zeta_d = 4.518674$ for Li and $\zeta_s =$ 3.764945, $\zeta_p = 3.0511$, $\zeta_d = 5.420585$, and $\zeta_f = 4.557524$ for Na. These additional uncontracted basis functions account for core-correlation and were obtained by analysing and comparing the range of the exponents of the corresponding cc-pVTZ^{S23} (cc-pVTZ-F12)^{S24} and aug-ccpwCVTZ^{S23} (cc-pCVTZ-F12)^{S24} AO basis sets. Def2-QZVPP/MP2FIT^{S28a} and def2-QZVPP/JKFIT^{S25} were selected as fitting basis sets and cc-pCVTZ-F12/OPTRI was selected as

the CABS.^{S24} The triple- ζ quality basis sets used in the DF-LCCSD(T) and DF-LCCSD(T)-F12x calculations are denoted in the text as TZ and TZ-F12, respectively.

For K, the ECP10MDF effective core potential (ECP) was employed to account for the 1s, 2s, and 2p orbitals, where MDF indicates that the neutral atom is used in the derivation of the ECP which involves the use of the fully relativistic approach as described by the Stuttgart/Cologne group.^{S30} The atomic basis set for the K⁺ 3s² 3p⁶ orbitals was designed to couple with the ECP10MDF ECP as follows:- An even-tempered (11s9p) set of functions were contracted to [1s1p] with the coefficients for the K⁺ 3s² 3p⁶ occupied atomic orbitals being obtained from a restricted Hartree-Fock (RHF) calculation on K⁺ using the ECP10MDF ECP and the (11s9p) basis set. Both the exponents of the 11s and 9p primitive functions were centered on $\zeta = 1.2$ with a ratio of 2.0. Additional uncontracted functions, namely, three s ($\zeta = 1.125$, 0.45, 0.18), two p ($\zeta = 0.8$, 0.32), and two d ($\zeta = 0.6$, 0.24), were added to give the ECP10MDF[4s3p2d] basis set which is of the same standard as the aug-cc-pVDZ basis set. Four s ($\zeta = 2.8125$, 1.125, 0.45, 0.18), two p ($\zeta = 1.1$, 0.15), two d ($\zeta = 1.2$, 0.4), and one f ($\zeta = 0.6$) uncontracted functions were incorporated to yield the ECP10MDF[5s3p2d1f] basis set which is of approximately triple- ζ quality. For K, the def2-QZVPP basis set was used as both the ABS and the CABS.^{S19b,S25,S31}

All computations were carried out with resources (CPU time and software) provided by the GridChem Science Gateway^{S32} and the UK National Service for Computational Chemistry Software (NSCCS), and a local cluster in Hong Kong. The processing of input and output files was carried out using ExcelAutomat.^{S33}

Figure S1: Lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures obtained using the B3LYP/6-311G(d,p) method. The symmetry of each structure is provided. Selected H atoms are omitted for clarity.

Further information on [M(Me₄cyclen)]⁺ and [M(Me₄cyclen)(L)]⁺

Initially, the alkali metal-Me₄cyclen complexes, $[M(Me_4cyclen)]^+$ (M = Li, Na, and K), were optimised in the $C_4(++++)$ conformation using the DFT BP86/6-311G(d,p) and B3LYP/6-311G(d,p) methods. In $C_4(++++)$, C_4 corresponds to the symmetry of the complexes and (++++) indicates that all four *N*-donor atoms of the Me₄cyclen ring lie in the same plane and orient towards the M⁺ center. It should be noted that $C_4(++++)$ is the most frequently found conformation in Xray structures and geometry optimisation calculations of $[M(Me_4cyclen)]^+$ complexes and their derivatives, with minor variations being observed in the symmetry of some complexes.^{S34,S5a,b} The BP86 minimum energy structures in the $C_4(++++)$ conformation are shown in Figure 1.

	BP86	5/6-3110	G(d,p)	B3LY	B3LYP/6-311G(d,p			
	Li	Na	K	Li	Na	K		
Bond distance, M-N (Å)	2.173	2.458	2.806	2.159	2.442	2.807		
Bond angle, N–M–N (°)	85.5	77.8	67.9	85.8	78.2	67.7		
Dihedral angle, N–C–C–N (°)	-55.5	-62.0	-64.8	-54.8	-61.6	-64.5		
Cavity size of Me_4 cyclen ring $(A^2)^a$	8.706	9.533	9.821	8.647	9.485	9.791		
Distance (Å) between the plane of the four <i>N</i> -donor atoms of the Me ₄ cyclen ring and the M ⁺ ions	0.606	1.129	1.721	0.582	1.106	1.728		

Table S1: Selected	l geometrical	parameters	of the optimis	sed [M(Me ₄ cyc	[len)] ⁺ structures.
--------------------	---------------	------------	----------------	----------------------------	---------------------------------

^a Calculated using the Heron's formula; see reference S35.

The geometrical parameters of the $[M(Me_4cyclen)]^+$ structures are provided in Table S1.Very similar geometrical parameters were obtained with both the BP86 and B3LYP functionals. The M–N bond distances of the $[M(Me_4cyclen)]^+$ structures increase due to an increase in the size of the ionic radii of the M⁺ ions (Li⁺: 0.92 Å; Na⁺: 1.24 Å; K⁺: 1.55 Å).^{S36} This is accompanied by a simultaneous decrease in the acuteness of the N–M–N bond angles, which enhances the displacement of the M⁺ ions out of the plane formed by the four *N*-donor atoms of the Me₄cyclen ring and increases the mean cavity size of the flexible Me₄cyclen ring.

The $[M(Me_4cyclen)]^+$ structures obtained were then used as initial geometries in the full optimisation of the $[M(Me_4cyclen)(L)]^+$ structures. The exposed M⁺ centre of each

 $[M(Me_4cyclen)]^+$ optimised structure allows the possibility for additional ligand coordination. Thus, the *O*- or *Cl*-donor atoms of the H₂O, THF, DEE, MeOH, and DCM ligands can interact with the M⁺ centres at the apical position of the $[M(Me_4cyclen)]^+$ backbone forming pseudo-square pyramidal $[M(Me_4cyclen)(L)]^+$ structures. The BP86 and B3LYP lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures are denoted as **M-L-1a** (Figure 1) and **M-L-2a** (Figure S1), respectively (M = Li, Na, K, and L = H₂O, THF, DEE, MeOH, DCM). Several $[M(Me_4cyclen)(L)]^+$ low-lying structures are provided in Figures S2-S7 (details provided in next section).

The symmetries of the BP86 and B3LYP lowest minimum energy structures for each $[M(Me_4cyclen)(L)]^+$ complex are the same for each metal, except for Na-DCM-1a and Na-DCM-2a (C_1 and C_2 , respectively) and K-DEE-1a and K-DEE-2a (C_2 and C_1 , respectively). The $[M(Me_4cyclen)(L)]^+$ structures obtained are slightly sensitive to the functionals employed with the main difference, notably between the M-L-1a (BP86) and M-L-2a (B3LYP) lowest minimum energy structures, lying in the spatial arrangement of L. For example, the dihedral angles, $\mathcal{O}(N1-M-O-H1)$ of the Na-H₂O-1a (Figure 1) and Na-H₂O-2a (Figure S1) structures are 55.3° and 14.7°, respectively. However, it is noteworthy that rotation about the M-O (H₂O, THF, DEE, MeOH) and M-Cl (DCM) axis entails negligible change in the relative energy of the resulting $[M(Me_4cyclen)(L)]^+$ structures, suggesting a very flat rotational potential with a low rotational barrier.

Complexation of $[M(Me_4cyclen)]^+$ to L results in the M-L-1a (BP86) and the M-L-2a (B3LYP) minimum energy structures having either a $C_2(++++)$ or a $C_1(++++)$ conformation. Selected geometrical parameters of the structures M-L-1a (M-L-2a) are provided in Tables S2 and S3 and these are compared with those of the $[M(Me_4cyclen)]^+$ optimised structures in Table S1. Upon complexation, the Li–N, Na–N, and K–N bond distances lengthen by 0.007-0.156 Å (BP86; B3LYP, 0.020-0.210 Å), 0.016-0.075 Å (BP86; B3LYP, 0.026-0.068 Å), and 0.017-0.056 Å (BP86; B3LYP, 0.018-0.058 Å), respectively. A decrease of less than 5° in the N–M–N bond angles is observed along with an increase of about 0.030-0.300 Å (BP86; B3LYP, 0.040-0.320 Å) in the distance between the plane of the four *N*-donor atoms of the Me₄cyclen ring and the M⁺ ions. The cavity size of the Me₄cyclen ring expands on addition of L to Me₄cyclen by a maximum of 0.231 A² (BP86; B3LYP, 0.276 A²) for the Li⁺ complexes in the order of Li-DEE-1a (Li-DEE-2a) > Li-THF-1a (Li-THF-2a) > Li-MeOH-1a (Li-MeOH-2a) > Li-H₂O-1a (Li-H₂O-2a) > Li-DCM-1a (Li-DCM-2a). The change in the cavity size of the Me₄cyclen ring for the Na⁺ and K⁺

lowest minimum energy structures is negligible ($\leq 0.030 \text{ A}^2$). In fact, as the size of the ionic radii of M⁺ increases from Li⁺ (0.92 Å) \rightarrow Na⁺ (1.24 Å) \rightarrow K⁺ (1.55 Å),^{S36} the geometrical parameters associated with the [M(Me₄cyclen)]⁺ fragment in [M(Me₄cyclen)(L)]⁺ become closer to those of their [M(Me₄cyclen)]⁺ parent structure. Complexation with the DCM ligand affects the geometrical parameters of [M(Me₄cyclen)]⁺ backbone to a lesser extent than complexation with *O*-donor ligands.

The M–N bond distances, N–M–N bond angles, N–C–C–N dihedral angles, the cavity size of the Me₄cyclen ring, and the distance between the plane formed by the four *N*-donor atoms of the Me₄cyclen ring and the M⁺ ions, for the **M-L-1a** (**M-L-2a**) structures follow similar trends as their $[M(Me_4cyclen)]^+$ counterparts as the size of the ionic radii of M⁺ increases from Li⁺ to Na⁺ to K⁺.

The overall changes observed in the geometrical parameters upon complexation of $[M(Me_4cyclen)]^+$ to L indicate that (i) the effects of steric hindrance between Me_4cyclen and L are maximum in Li-DEE-1a (Li-DEE-2a), (ii) DCM coordinates weakly to the $[M(Me_4cyclen)]^+$ unit as compared to its *O*-donor analogues, and (iii) as the size of the ionic radii of M⁺ increases from $Li^+ \rightarrow Na^+ \rightarrow K^+$, steric hindrance between Me_4cyclen and L in M-L-1a (M-L-2a) decreases, and thus the effect on the geometry of the $[M(Me_4cyclen)]^+$ unit in $[M(Me_4cyclen)(L)]^+$ also decreases.

An analysis of the lowest minimum energy structures with *O*-donor ligands reveals that the M–O bond of **M-L-1a** (**M-L-2a**), for $L = H_2O$, THF, and DEE, is essentially normal to the plane formed by the four *N*-donor atoms of Me₄cyclen, with the dipole moment of each structure aligning along the M–O bond. The M–O bond of **M-MeOH-1a** (**M-MeOH-2a**) is tilted by \approx 3-10° from the normal of the equatorial plane. In general, the M–O bond distances of **M-H₂O-1a** (**M-H₂O-2a**), **M-THF-1a** (**M-THF-2a**), **M-DEE-1a** (**M-DEE-2a**), and **M-MeOH-1a** (**M-MeOH-2a**) are comparable (for M = Li and Na; see Tables S2). The K–O bond distance of **K-DEE-1a** (BP86, 2.805 Å; B3LYP, 2.788 Å) is significantly longer than the K–O bonds in **K-H₂O-1a** (BP86, 2.718 Å; B3LYP, 2.711 Å), **K-THF-1a** (BP86, 2.721 Å; B3LYP, 2.705 Å), and **K-MeOH-1a** (BP86, 2.729 Å; B3LYP, 2.713 Å). This observation can be correlated to the spatial arrangement of the DEE fragment in a gauche-gauche (GG) conformation while for M = Li and Na) have their DEE fragment in a gauche-gauche (GG) conformation while for M = K, **K-DEE-1a** (**K-DEE-2a**) adopts a trans-trans (TT) conformation. The M–N and M–O bond distances of **K-DEE-1a** (**K-DEE-2a**) are longer than their Li⁺ and Na⁺ counterparts, thus its DEE fragment is free to

adopt a less sterically hindered conformation, a TT conformation. This is consistent with the known lowest energy structure of DEE in the gas-phase which is known to be TT^{S37} and the results of DFT BP86 and B3LYP calculations on DEE summarised in Figures S9 an S10 [Figure S10 shows a diagram of the TT, trans-gauche (TG), and GG structures of DEE].

In order to provide further insight into the structure of L in the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures, BP86 and B3LYP calculations were performed on the monosolvated alkali metal ion structures, $[M^+-L]$ (M = Li, Na, K, and L = H₂O, THF, DEE, MeOH, DCM) (details provided in next section). For L = DEE, all the lowest $[M^+-DEE]$ minimum energy structures have their DEE fragment in the TT conformation with the GG conformation being 15.8 (16.8), 14.2 (15.9), and 9.6 (11.3) kJ.mol⁻¹ higher in energy for M = Li, Na, and K, respectively (Figure S9) (BP86 values are quoted with B3LYP values in brackets).

In the $[M(Me_4cyclen)(L)]^+$ complexes with L = DEE, for M = Li and Na, it appears that the close proximity between the Me_4cyclen and DEE forces DEE to adopt a more sterically hindered conformation in the **M-DEE-1a** (**M-DEE-2a**) structures than in the M = K case. Further, a significant decrease of $\approx 20^\circ$ in the dihedral angles $\mathcal{O}_1(C14-O-C13-C16)$ and $\mathcal{O}_2(C13-O-C14-C15)$ is observed arising from steric hindrance on going from **Na-DEE-1a** (**Na-DEE-2a**) to Li-**DEE-1a** (Li-DEE-2a) which is accompanied by a decrease in the corresponding M–N and M–O bond distances. In contrast, for the corresponding [M⁺-L] structures for M = Li and Na, the dihedral angles \mathcal{O}_1 and \mathcal{O}_2 of the least stable [Li⁺-DEE] (GG) structure [BP86, 84.6°; B3LYP, 85.3°] are comparable to that of [Na⁺-DEE] (GG) [BP86, 85.9°; B3LYP, 86.7°].

The **M-DCM-1a** (**M-DCM-2a**) [M(Me₄cyclen)(L)]⁺ structures (M = Li, Na, K) differ significantly from each other. The small Li⁺ ion in **M-DCM-1a** (**M-DCM-2a**) interacts with DCM in a monodentate η^1 -Cl1 coordination mode with the Li–Cl2 distance (BP86, 4.344; B3LYP, 4.405 Å) being significantly greater than the sum of the van der Waals (vdW) radii of the Li (1.81 Å) and Cl (1.75 Å) atoms.^{S38} On the other hand, Na⁺ and K⁺ ions interact with DCM in a bidentate η^2 -Cl1,Cl2 coordination mode with their M–Cl distances being within the sum of their respective vdW contact distances.^{S38} Comparison of the [M⁺-DCM] (M = Li, Na, K) structures (Figure S9), where M⁺ coordinates to DCM in an η^2 -Cl,Cl fashion, highlights the presence of steric hindrance between Me₄cyclen and DCM in Li-DCM-1a (Li-DCM-2a). Further, the plane in DCM defined by Cl1–Cl3–Cl2 in Na-DCM-1a (Na-DCM-2a) is perpendicular to the plane of the four *N*-donor atoms of the Me₄cyclen ring while that of the K⁺ analogue deviates from perpendicular. This implies that the tilted DCM fragment in the **K-DCM-1a** (**K-DCM-2a**) structures is less sterically hindered by the methyl groups of the Me₄cyclen macrocycle than in the Na⁺ case.

Further information on low-lying [M(Me₄cyclen)(L)]⁺ structures

Several $[M(Me_4cyclen)(L)]^+$ low-lying structures, denoted as **M-L-1x** and **M-L-2x**, where **x** = **b-o**, are provided in Figures S2-S4 (BP86) and Figures S5-S7 (B3LYP).

The main difference, between the $[M(Me_4cyclen)(L)]^+$ low-lying structures (M = Li, Na, K, and L = H₂O, THF, MeOH, DCM), lies in the spatial arrangement of their auxiliary ligands, L. Significant difference is observed in their dihedral angles, \emptyset , N1–M–O–H1 (L = H₂O, MeOH), N1–M–O–C13 (L = THF, DEE), and N1–M–C13–C11 (L = DCM). However, it is notable that a change in the dihedral angle (with L being in a particular conformation) entails negligible change in the relative energy of the resulting [M(Me₄cyclen)(L)]⁺ structures. For instance, considering the low-lying structures **Na-THF-1b** to **Na-THF-1e** as an example (see Figure S3b), a change in \emptyset (N1–M–O–C13) does not alter the relative stability significantly.

The $[M(Me_4cyclen)(L)]^+$ structures **M-DEE-1a-x** (**M-DEE-2a-x**), where M = Li, Na, feature their DEE moiety in four distinct conformations, namely, trans-trans (TT), trans-gauche (TG), gauche-gauche (GG), and GGE (see Figure S3c as an example), which are in accordance with Kuze *et al.*'s study^{S37} on the conformational analysis of free DEE molecule. The dihedral angle $\emptyset_1(C14-O-C13-C16)$ equals $\emptyset_2(C13-O-C14-C15)$ in the **M-DEE-1a-x** (**M-DEE-2a-x**) structures with DEE in the GG conformation, ranging from 63° to 66° (Li⁺) and from 79° to 84° (Na⁺), respectively. In contrast, $\emptyset_1 \neq \emptyset_2$ for those adopting the GGE conformation and for example, in the **Na-DEE-1a-x** (**Na-DEE-2a-x**) structures (Figure S3c), \emptyset_1 ranges from -105° to -111° while \emptyset_2 ranges from 70° to 73°. The GGE conformation is not observed for the K⁺ counterpart. An attempt to optimise the GGE conformation of the free DEE ligand and the [M⁺-DEE] complex (M = Li, Na, K), using the BP86/6-311G(d,p) and B3LYP/6-311G(d,p) methods, was unsuccessful (details provided in next section). The GGE conformation eventually converges to the TG conformation. The DEE's GGE conformation is formed in **M-DEE-1a-x** (**M-DEE-2a-x**) (M = Li, Na) due to steric hindrance.

(c)

(d)

Figure S2: Low-lying $[Li(Me_4cyclen)(L)]^+$ structures obtained using the BP86/6-311G(d,p) method, where L = H₂O (a), THF (b), DEE (c), MeOH (d), and DCM (e). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

(a)

(b)

(c)

(d)

(e)

Figure S3: Low-lying $[Na(Me_4cyclen)(L)]^+$ structures obtained using the BP86/6-311G(d,p) method, where L = H₂O (a), THF (b), DEE (c), MeOH (d), and DCM (e). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

(a)

(b)

(c)

(d)

Figure S4: Low-lying $[K(Me_4cyclen)(L)]^+$ structures obtained using the BP86/6-311G(d,p) method, where L = H₂O (a), THF (b), DEE (c), and MeOH (d). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

(a)

(b)

(c)

Figure S5: Low-lying $[Li(Me_4cyclen)(L)]^+$ structures obtained using the B3LYP/6-311G(d,p) method, where L = H₂O (a), DEE (b), MeOH (c), and DCM (d). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

(a)

(c)

(d)

(e)

Figure S6: Low-lying $[Na(Me_4cyclen)(L)]^+$ structures obtained using the B3LYP/6-311G(d,p) method, where L = H₂O (a), THF (b), DEE (c), MeOH (d), and DCM (e). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

(a)

(b)

Figure S7: Low-lying $[K(Me_4cyclen)(L)]^+$ structures obtained using the B3LYP/6-311G(d,p) method, where L = H₂O (a), THF (b), DEE (c), and MeOH (d). The symmetry, relative energy (with respect to the lowest minimum energy structure), and selected dihedral angles of each structure are provided. Selected H atoms are omitted for clarity.

		M-H ₂ C)-1 a		M-THF-1a				
Bond distances (Å)	Li	Expt. ^a	Na	K	Li	Na	Expt. ^a	K	
M-N1	2.256	2.186(8)	2.502	2.842	2.253	2.521	2.463(4)	2.853	
M-N2	2.254	2.206(8)	2.505	2.835	2.330	2.522	2.461(3)	2.843	
M-N3	2.256	2.179(8)	2.502	2.842	2.253	2.521	2.453(4)	2.853	
M–N4	2.254	2.154(9)	2.505	2.835	2.330	2.522	2.444(4)	2.843	
М-О	2.009	1.98(1)	2.340	2.718	2.028	2.351	2.244(3)	2.721	
Bond angles (°)									
N1-M-N2	82.3	82.8(3)	75.9	66.9	80.9	75.3	75.4(1)	66.8	
N2-M-N3	82.4	82.1(3)	76.2	66.9	81.6	75.6	75.6(1)	66.7	
N3-M-N4	82.3	84.7(3)	75.9	66.9	80.9	75.3	76.0(1)	66.8	
N4-M-N1	82.4	82.6(3)	76.2	66.9	81.6	75.6	75.5(2)	66.7	
Torsion (°)									
N1-C5-C6-N2	-57.1	59.4(7)	-61.9	-64.7	-56.1	-62.2	-64(1)	-64.9	
N2-C7-C8-N3	-57.1	55.8(8)	-62.6	-64.2	-59.9	-62.7	-61(1)	-64.4	
N3-C9-C10-N4	-57.1	54.0(9)	-61.9	-64.7	-56.1	-62.2	-59(1)	-64.9	
N4-C11-C12-N1	-57.1	57.5(7)	-62.6	-64.2	-59.9	-62.7	-65(1)	-64.4	
N1-M-O-H1	11.7		55.3	10.1					
N1-M-O-C13					69.1	70.0	59.6	-7.7	

Table S2 (a): Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures obtained using the BP86/6-311G(d,p) method for M = Li, Na, and K with L = H₂O and THF.

^a Corresponds to the [Li(Me₄cyclen)(H₂O)]⁺ and [Na(Me₄cyclen)(THF)]⁺ crystal structures, respectively.^{S5a}

	M-DEE-1a			M	-MeOH-	-1a	M-DCM-1a			
Bond distances (Å)	Li	Na	K	Li	Na	K	Li	Na	K	
M-N1	2.329	2.529	2.851	2.266	2.500	2.842	2.260	2.504	2.831	
M-N2	2.271	2.515	2.862	2.269	2.509	2.840	2.190	2.484	2.824	
M-N3	2.329	2.533	2.851	2.258	2.511	2.843	2.228	2.506	2.822	
M-N4	2.271	2.512	2.862	2.257	2.511	2.844	2.180	2.474	2.823	
M-O	2.042	2.364	2.805	2.016	2.354	2.729				
M-Cl1							2.784	3.188	3.623	
MC12							4.344	3.369	3.626	
Bond angles (°)										
N1-M-N2	81.0	75.5	66.5	81.5	75.9	66.9	83.9	76.5	67.3	
N2-M-N3	81.1	75.4	66.6	82.4	76.0	66.8	83.9	76.4	67.3	
N3-M-N4	81.0	75.4	66.5	82.2	75.7	66.9	84.5	76.7	67.3	
N4-M-N1	81.1	75.4	66.6	82.4	76.0	66.9	83.8	76.6	67.3	
Torsion (°)										
N1-C5-C6-N2	-59.0	-63.0	-64.6	-56.6	-62.1	-64.8	-58.7	-62.9	-64.6	
N2C7C8N3	-57.8	-62.0	-65.6	-57.7	-62.3	-64.8	-55.2	-61.7	-64.6	
N3-C9-C10-N4	-59.0	-63.0	-64.6	-57.2	-62.1	-64.7	-55.2	-63.1	-64.5	
N4-C11-C12-N1	-57.8	-61.5	-65.6	-57.7	-62.2	-65.0	-55.7	-61.6	-64.9	
N1-M-O-H1				50.6	31.4	82.5				
N1-M-O-C13	43.2	8.5	57.7							
N1-M-C13-C11							12.8	23.2	104.4	

Table S2 (b): Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures obtained using the BP86/6-311G(d,p) method, for M = Li, Na, and K with L = DEE, MeOH, and DCM.

	M-H ₂ O-2a		la	M-THF-2a		M-DEE-2a			M-MeOH-2a			M-DCM-2a			
Bond distances (Å)	Li	Na	Κ	Li	Na	Κ	Li	Na	Κ	Li	Na	Κ	Li	Na	Κ
M-N1	2.242	2.488	2.843	2.235	2.498	2.851	2.369	2.509	2.853	2.224	2.489	2.844	2.194	2.485	2.834
M-N2	2.239	2.482	2.834	2.333	2.502	2.844	2.226	2.493	2.865	2.278	2.490	2.849	2.216	2.468	2.834
M-N3	2.242	2.488	2.843	2.235	2.498	2.851	2.369	2.510	2.853	2.237	2.492	2.837	2.179	2.485	2.825
M-N4	2.239	2.482	2.834	2.333	2.502	2.844	2.226	2.494	2.865	2.271	2.492	2.851	2.198	2.468	2.830
M-O	1.987	2.311	2.711	2.006	2.311	2.705	2.018	2.333	2.788	1.989	2.316	2.713			
M-Cl1													2.832	3.195	3.543
M-Cl2													4.405	3.195	3.530
Bond angles (°)															
N1-M-N2	82.7	76.5	66.9	81.0	75.8	66.6	81.3	76.0	66.4	82.3	76.5	66.7	84.2	77.0	67.0
N2-M-N3	82.7	76.5	66.9	81.8	76.0	66.6	81.0	75.9	66.5	82.1	76.1	66.8	84.6	76.9	67.1
N3-M-N4	82.7	76.5	66.9	81.0	75.8	66.6	81.3	76.0	66.4	82.3	76.3	66.8	84.8	77.0	67.1
N4-M-N1	82.7	76.5	66.9	81.8	76.0	66.6	81.0	76.0	66.5	82.7	76.2	66.5	84.4	76.9	67.0
Torsion (°)															
N1-C5-C6-N2	-56.4	-61.6	-64.5	-55.4	-61.4	-64.6	-60.4	-62.4	-64.2	-56.0	-62.0	-64.3	-55.6	-62.3	-64.4
N2-C7-C8-N3	-56.3	-61.5	-64.1	-60.0	-62.0	-64.3	-56.3	-61.4	-65.1	-57.3	-61.5	-64.7	-56.6	-61.3	-64.6
N3-C9-C10-N4	-56.4	-61.6	-64.5	-55.4	-61.4	-64.6	-60.4	-62.4	-64.2	-56.1	-61.8	-64.6	-55.7	-62.3	-64.1
N4-C11-C12-N1	-56.3	-61.5	-64.1	-60.0	-62.0	-64.3	-56.3	-61.5	-65.1	-57.6	-61.5	-64.2	-56.2	-61.3	-64.4
N1-M-O-H1	10.0	14.3	15.7							106.2	129.0	112.4			
N1-M-O-C13				71.7	57.5	26.6	31.5	9.2	55.8						
N1-M-C13-Cl1													75.1	27.7	114.0

Table S2 (c): Selected geometrical parameters of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures obtained using the B3LYP/6-311G(d,p) method.

Table S3: Cavity size of the Me₄cyclen ring and the distance between the plane of the four *N*-donor atoms of the Me₄cyclen ring and the M⁺ ions of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures.

BP86/6-311G(d,p)							B	3LYP/6-3110	G(d,p)				
	Cavity size of the Me ₄ cyclen ring (A ²) ^a												
M	M-H ₂ O-1a	M-THF-1a	M-DEE-1a	M-MeOH-1a	M-DCM-1a	M-H ₂ O-2a	M-THF-2a	M-DEE-2a	M-MeOH-2a	M-DCM-2a			
Li	8.815	8.867	8.937	8.839	8.791	8.766	8.869	8.923	8.797	8.724			
Na	9.516	9.523	9.527	9.512	9.528	9.466	9.466	9.483	9.467	9.486			
Κ	9.791	9.807	9.828	9.814	9.799	9.780	9.780	9.810	9.779	9.771			
		Distanc	e (Å) betwee	n the plane of	the four N-do	nor atoms of	the Me ₄ cycl	en ring and t	he M ⁺ ions				
Μ	M-H ₂ O-1a	M-THF-1a	M-DEE-1a	M-MeOH-1a	M-DCM-1a	M-H ₂ O-2a	M-THF-2a	M-DEE-2a	M-MeOH-2a	M-DCM-2a			
Li	0.824	0.894	0.905	0.837	0.713	0.798	0.884	0.901	0.821	0.681			
Na	1.228	1.263	1.264	1.238	1.202	1.201	1.232	1.231	1.213	1.178			
K	1.778	1.791	1.802	1.780	1.755	1.779	1.794	1.808	1.790	1.769			

^a Calculated using the Heron's formula; see reference S35.

311G(d,p) method. Relevant atom labeling is provided.

Me ₄ cyclen			[Me ₄ cyclenH] ⁺		
Bond distances (Å)			Bond distances (Å)		
R(1-2)	С-Н*	1.118	R(1-2)	С–Н*	1.111
R(1-3)	C–H*	1.102	R(1-3)	С–Н*	1.100
R(1-41)	C-N*	1.460	R(1-41)	C-N*	1.469
R(5-42)	C-N*	1.456	R(5-45)	C-N*	1.499
R(17-18)	С–Н	1.101	R(17-18)	С–Н	1.103
R(17-19)	С–Н	1.117	R(17-19)	С–Н	1.108
R(17-20)	С–С	1.541	R(17-20)	C–C	1.531
R(17-41)	C–N	1.469	R(17-41)	C–N	1.468
R(20-42)	C–N	1.464	R(20-45)	C–N	1.521
			R(44-45)	H–N	1.104
			R(43-44)	N…H	1.796
Bond angles (°)			Bond angles (°)		
A(2-1-3)	Н–С–Н*	108.1	A(2-1-3)	Н–С–Н*	108.4
A(2-1-41)	H-C-N*	113.3	A(2-1-41)	H-C-N*	113.0
A(1-41-17)	C-N-C*	111.3	A(1-41-17)	C-N-C*	112.0
A(24-23-25)	Н–С–Н	105.5	A(24-23-25)	Н–С–Н	107.5
A(24-23-26)	Н–С–С	109.5	A(24-23-26)	Н–С–С	111.5
A(24-23-42)	H–C–N	107.9	A(24-23-45)	H–C–N	106.0
A(26-23-42)	C-C-N	115.1	A(26-23-45)	C-C-N	114.5
			A(5-45-44)	C-N-H*	107.4
			A(20-45-44)	C-N-H	109.0
			A(32-43-44)	С–N…Н	111.0
			A(35-43-44)	С–N…Н	105.7
			A(45-44-43)	N–H…N	173.9
Torsion (°)			Torsion (°)		
T(41-17-20-42)	N-C-C-N	-75.3	T(41-17-20-45)	N-C-C-N	-73.7
T(42-23-26-43)	N-C-C-N	-49.3	T(45-23-26-42)	N-C-C-N	-43.4
T(43-29-32-44)	N-C-C-N	-75.3	T(42-29-32-43)	N-C-C-N	-72.5
T(44-35-38-41)	N-C-C-N	-49.3	T(43-35-38-41)	N-C-C-N	-43.3

Table S4: Selected geometrical parameters for the BP86 optimised Me_4 cyclen and $[Me_4$ cyclen $H]^+$ structures.^{a,b}

* Geometrical parameters associated with the methyl groups.

^a R, A, and D represent bond distances, bond angles, and dihedral angles, respectively. ^b Refer to Figure S8 for atom labeling.

Further information on monosolvated alkali metal ion structures, $[M^+-L]$, where M = Li, Na, K, and L = H₂O, THF, DEE, MeOH, DCM

Several studies underscored the coordination of alkali metal ions to prototypical monofunctional or polyfunctional ligands such as H₂O, MeOH, and glycine (H₂NCH₂COOH). Focus is mainly laid on the gas-phase alkali metal ion ligation thermochemistry and on the microscopic picture of their solvation dynamics.^{S39} The monosolvated alkali metal ion structures, $[M^+-L]$ (M = Li, Na, K, and L = H₂O, THF, DEE, MeOH, DCM), are revisited using the BP86/6-311G(d,p) and B3LYP/6-311G(d,p) methods in view to have a better understanding of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures. The spatial arrangement of the corresponding Li⁺, Na⁺, and K⁺ complexes are comparable to each other with major changes observed in their M–O and M–Cl bond distances as well as their Cl1–M–Cl2 bond angles (Figures S9). The $[M^+-L]$ structures obtained using the two methods are comparable in terms of geometrical parameters. An increase in the size of the ionic radii of the M⁺ ions entails a systematic increase in the M–O and M–Cl bond distances.

Water often acts as a universal solvent in biological or synthetic processes. In fact, hydrated alkali metal cluster ions, $[M(H_2O)_n]^+$, where $n \ge 1$, are among the most studied model systems as compared to their non-aqueous THF, DEE, MeOH, and DCM solvate analogues.^{S39a,b,S40} The polar protic H₂O and MeOH solvents interact to M⁺ ions *via* their oxygen atom to form the corresponding [M⁺-L] complexes (Figure S9), with the dipole moment of the solvents pointing directly towards M⁺, giving rise to a charge-dipole interaction. The M–O bond distances of the [M⁺-MeOH] structures are slightly shorter than that of the H₂O analogues. The optimised [M⁺-L] structures (L = H₂O, MeOH) conform very well to that of literature and a detailed comparison of selected geometrical parameters for the [M⁺-L] structures is provided in Table S5.

For each [M⁺-DEE] complex, three stable structures were obtained, with their DEE moiety adopting the trans-trans (TT), trans-gauche (TG), and gauche-gauche (GG) conformations. The relative stability of the [M⁺-DEE] structures is in the order of TT > TG > GG (Figure S9), which is consistent with that of the free DEE ligand (Figure S10). The TG and GG conformations are 5.5 and 10.6 kJ.mol⁻¹ (BP86; B3LYP, 6.2 and 11.7 kJ.mol⁻¹), respectively, higher in energy than the TT one for the free DEE ligand. Although DEE is a commonly used aprotic solvent in various chemical processes, literature on their monosolvated alkali metal ions are rather sparse.^{S41} Recently, Valadbeigi^{S41a} reported the alkali metal cation affinities (Δ H) and basicities (Δ G) of the TT structure of [M⁺-DEE] (M = Li, Na) alongside that of the H₂O and MeOH analogues. The geometrical parameters of the [M⁺-L] optimised

structures together with their thermochemical stabilities, which are in the order of $L = DEE > MeOH > H_2O$, are comparable to our results (Tables S5-S6). In addition, the lowest [Li⁺-L] minimum energy structures (L = DEE, THF) is similar to that calculated by Jarek and coworkers (Table S5).^{S41b} The same report highlights that steric effect plays a major role in entailing DEE to adopt the TG conformation as was observed in the [Li(DEE)₃]⁺ complex which consists of one DEE in the TT conformation with the remaining two in the TG conformation. The theoretically as well as the experimentally derived bond dissociation enthalpy and free energy are indicative that the stability of [Li⁺-DEE] (TT) and [Li⁺-THF] are comparable.^{S41b}

The [M⁺-DCM] structures adopt the C_{2v} symmetry. In accordance to Bloomfield *et al.*'s study,^{S42} DCM binds to the M⁺ centres in a bidentate η^2 -Cl,Cl coordination mode with their M–Cl1 and M–Cl2 bonds being equidistant. The Cl1–M–Cl2 bond angles decrease from 76.7° \rightarrow 64.2° \rightarrow 54.3° (BP86; B3LYP, 77.2° \rightarrow 64.6° \rightarrow 54.2°) on going from Li⁺ \rightarrow Na⁺ \rightarrow K⁺, while the Cl1–C–Cl2 bond angles increase only marginally from 110.3° \rightarrow 111.9° \rightarrow 112.4° (BP86; B3LYP, 109.9° \rightarrow 111.5° \rightarrow 112.2°).

Figure S9: Optimised structures of $[M^+-L]$ obtained using the (a) BP86/6-311G(d,p) and (b) B3LYP/6-311G(d,p) methods. The M–O/M–Cl bond distances and symmetry of each structure are provided. The zero-point corrected relative energies (kJ.mol⁻¹) of the trans-trans (TT), transgauche (TG), and gauche-gauche (GG) $[M^+-DEE]$ structures are also given.

Figure S10: Optimised geometries and zero-point corrected relative energies (ΔE in kJ.mol⁻¹) of DEE obtained using the BP86/6-311G(d,p) method. The B3LYP relative energies are within brackets. The symmetry of each structure is provided.

[Li ⁺ -H ₂ O]	Geometrical parameters	Methods	References	
$r(O\cdots Li)$ (Å)	1.849			
r(O-H) (Å)	0.975	DD96/(6.211C(4.m))	This work	
θ(H–O–H) (°)	105.3	BP80/0-3110(d,p)	THIS WOLK	
$\theta(\text{Li}\cdots\text{O-H})$ (°)	127.3			
$r(O\cdots Li)$ (Å)	1.828			
r(O-H) (Å)	0.967	D2IVD/6211C(dn)	This work	
θ(H–O–H) (°)	105.9	B5L1F/0-5110(d,p)	THIS WOLK	
θ(Li…O−H) (°)	127.0			
$r(O\cdots Li)$ (Å)	1.842			
r(O-H) (Å)	0.967	D2I VD/6 211 + $C(d_{n})$	S41a	
θ(H–O–H) (°)	105.8	B3L1P/0-311++O(a,p)	541a	
θ(Li…O−H) (°)	127.1			
$r(O\cdots Li)(Å)$	1.867	MP2/6-31G(d)	S43	
$r(O\cdots Li)$ (Å)	1.930			
r(O-H) (Å)	0.957	Evolutionary algorithms ^b	S44	
θ(H–O–H) (°)	104.5	Evolutionary argorithms ⁵	544	
$\theta(\text{Li} \cdots \text{O-H}) (^{\circ})$	127.7			
$[Na^+-H_2O]$	Geometrical parameters	Methods	References	
$r(O \cdots Na)$ (Å)	2.224			
r(O-H) (Å)	0.973	DD86/6 211C(d n)	This work	
θ(H–O–H) (°)	104.5	BI 86/0-3110(d,p)	THIS WOLK	
θ (Na····O-H) (°)	127.8			
$r(O\cdots Na)$ (Å)	2.202			
r(O-H) (Å)	0.965	B3LVP/ $6_{-311}G(d n)$	This work	
θ(H–O–H) (°)	105.1	D3E11/0-3110(d,p)	THIS WOLK	
θ (Na····O-H) (°)	127.5			
$r(O \cdots Na)$ (Å)	2.225			
r(O-H) (Å)	0.966	B3I VP/6_311++ $C(d n)$	\$/1a	
θ(H–O–H) (°)	104.9	$D_{2} = 11/0 - 211 + O(\alpha, \beta)$	5 4 1a	
θ (Na···O-H) (°)	127.5			
$r(O\cdots Na)$ (Å)	2.231	MP2/6-31G(d)	S43	
$r(O \cdots Na)$ (Å)	2.212	B3LYP/6-311++G(3df,3pd)	S40a	
		Continued		

Table S5: Comparison of selected geometrical parameters of the $[M^+-L]$ optimised structures with literature.^a

[K ⁺ -H ₂ O]	Geometrical parameters	Methods	References
$r(O \cdots K)$ (Å)	2.581		
r(O-H) (Å)	0.973	$DD_{6}/6$ 211 $C(d_{p})$	This work
θ(H–O–H) (°)	103.8	BP80/0-3110(d,p)	THIS WOLK
$\theta(K \cdots O - H)$ (°)	128.1		
$r(O \cdots K)$ (Å)	2.579		
r(O-H) (Å)	0.965	$P_{21} V_{D/6} 211 C_{(d,n)}$	This work
θ(H–O–H) (°)	104.3	B3L1F/0-3110(d,p)	THIS WOLK
$\theta(K \cdots O - H)$ (°)	127.9		
$r(O\cdots K)$ (Å)	2.611	MP2/6-31G(d)	S43
$r(O\cdots K)$ (Å)	2.62	B3LYP/6-311++G(d,p)	
	2.626	B3LYP/6-311++G(2d,2p)	
	2.646	BLYP/6-311++G(2d,2p)	S45
	2.638	BLYP/6-311++G(d,p)	545
	2.631	B3PW91/6-311++G(2d,2p)	
	2.623	B3PW91/6-311++G(d,p)	
[Li ⁺ -MeOH]	Geometrical parameter	ers Methods	References
$r(O\cdots Li)(Å)$	1.830		
r(O-H) (Å)	0.973		This work
r(O-C) (Å)	1.474	BP86/6 311G(d n)	
<r(h–c)>(Å)</r(h–c)>	1.098	BI 80/0-5110(u,p)	
θ(Li···O–H) (°)	123.9		
θ (Li···O-C) (°)	128.3		
$r(O\cdots Li)(Å)$	1.809		
r(O-H) (Å)	0.965		
r(O-C) (Å)	1.466	B3I VP/6-311G(d n)	This work
<r(h-c)>(Å)</r(h-c)>	1.089	D5L11/0-5110(d,p)	THIS WOLK
θ(Li···O–H) (°)	123.4		
θ (Li···O-C) (°)	128.3		
$r(O\cdots Li)(Å)$	1.818		
r(O-H) (Å)	0.965		
r(O-C) (Å)	1.467	B3I $VP/6_{-}311 + + C(d_{n})$	\$41a
<r(h-c)>(Å)</r(h-c)>	1.089	D3L11/0-311++O(d,p)	5 4 1a
θ(Li···O–H) (°)	123.2		
θ (Li···O-C) (°)	108.5		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$r(O\cdots Li)(Å)$	1.959			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r(O-H) (Å)	0.958			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r(O-C) (Å)	1.418	Evolutionary algorithmat	S11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<r(h-c)>(Å)</r(h-c)>	1.095	Evolutionally algorithms	544	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ(Li…O–H) (°)	135.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\theta(\text{Li}\cdots\text{O-C})(^{\circ})$	117.8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(O\cdots Li)(Å)$	1.82	B3LYP/6-31+G(d)	S46	
$\begin{array}{ c c c c c c } & 1.850 & MP2/6-31G(d,p) \\ \hline 1.851 & MP2/6-31+G(d) & S47 \\ \hline 1.853 & MP2/6-31++G(d,p) \\ \hline 1.840 & MP2/6-311++G(d,p) \\ \hline 1.840 & 0.973 \\ r(O-C)(\dot{A}) & 1.463 \\ -r(H-C)>(\dot{A}) & 1.099 \\ \theta(Na\cdots O-H)(^{\circ}) & 123.8 \\ \theta(Na\cdots O-C)(^{\circ}) & 129.1 \\ r(O-H)(\dot{A}) & 0.964 \\ r(O-C)(\dot{A}) & 1.455 \\ -r(H-C)>(\dot{A}) & 1.090 \\ \theta(Na\cdots O-H)(^{\circ}) & 123.3 \\ \theta(Na\cdots O-C)(^{\circ}) & 129.0 \\ r(O-Na)(\dot{A}) & 2.206 \\ r(O-H)(\dot{A}) & 0.964 \\ r(O-C)(\dot{A}) & 1.457 \\ -s(H-C)>(\dot{A}) & 1.090 \\ \theta(Na\cdots O-H)(^{\circ}) & 123.4 \\ \theta(Na\cdots O-C)(^{\circ}) & 123.4 \\ \theta(Na\cdots O-H)(^{\circ}) & 123.4 \\ \theta(Na\cdots O-H)(^{\circ}) & 123.4 \\ \theta(Na\cdots O-C)(^{\circ}) & 128.6 \\ r(O-Na)(\dot{A}) & 2.228 \\ r(O-H)(\dot{A}) & 0.973 \\ r(O-C)(\dot{A}) & 1.486 \\ -s(H-C)>(\dot{A}) & 1.091 \\ \theta(Na\cdots O-H)(^{\circ}) & 121.2 \\ \theta(Na\cdots O-C)(^{\circ}) & 131.4 \\ \end{array}$	$r(O\cdots Li)(Å)$	1.848	MP2/6-31G(d)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.850	MP2/6-31G(d,p)		
$\begin{array}{ c c c c c c c } & 1.853 & MP2/6-31++G(d,p) \\ \hline 1.840 & MP2/6-311++G(2d,2p) \\ \hline [Na^+-MeOH] & Geometrical parameters & Methods & References \\ \hline r(O - Na) (Å) & 2.213 \\ r(O - H) (Å) & 0.973 \\ r(O - C) (Å) & 1.463 & BP86/6-311G(d,p) & This work \\ \neg r(H - C) (Å) & 1.099 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.8 & 0 \\ \hline 0(Na \cdots O - C) (°) & 129.1 & & \\ r(O - C) (Å) & 1.455 & B3LYP/6-311G(d,p) & This work \\ \neg r(H - C) (Å) & 1.090 & B3LYP/6-311G(d,p) & This work \\ \hline r(O - C) (Å) & 1.455 & \\ \neg r(H - C) (Å) & 1.090 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.3 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (Å) & 0.964 \\ r(O - C) (Å) & 1.457 & \\ \neg r(H - C) (Å) & 1.090 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (°) & 123.4 & 0 \\ \hline 0(Na \cdots O - H) (Å) & 0.973 \\ r(O - C) (Å) & 1.486 & \\ r(O - C) (Å) & 1.486 & \\ r(O - C) (Å) & 1.486 & \\ r(H - C) (Å) & 1.091 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.4 & \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.4 & \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 & 0 \\ \hline 0(Na \cdots O - H) (°) & 121.2 $		1.851	MP2/6-31+G(d)	S47	
$\begin{array}{ c c c c c } \hline 1.840 & MP2/6-311++G(2d,2p) \\ \hline [Na^+-MeOH] & Geometrical parameters & Methods & References \\ \hline r(O \cdots Na) (Å) & 2.213 \\ r(O-H) (Å) & 0.973 \\ r(O-C) (Å) & 1.463 & BP86/6-311G(d,p) \\ (Å) & 1.099 & BP86/6-311G(d,p) \\ \hline r(Na \cdots O-H) (°) & 123.8 & \\ \hline \theta(Na \cdots O-C) (°) & 129.1 & \\ r(O-C) (Å) & 2.191 \\ r(O-H) (Å) & 0.964 \\ r(O-C) (Å) & 1.455 & \\ (Å) & 1.090 & \\ \hline \theta(Na \cdots O-H) (°) & 123.3 & \\ \hline \theta(Na \cdots O-H) (°) & 123.3 & \\ \hline \theta(Na \cdots O-C) (°) & 129.0 & \\ r(O \cdots Na) (Å) & 2.206 \\ r(O-H) (Å) & 0.964 \\ r(O-C) (Å) & 1.457 & \\ (Å) & 1.486 & \\ \\ f(O \cdots Na) (Å) & 2.228 & \\ r(O-H) (Å) & 0.973 & \\ r(O-C) (Å) & 1.486 & \\ (Å) & 1.091 & \\ \\ \theta(Na \cdots O-H) (°) & 121.2 & \\ \\ \theta(Na \cdots O-H) (°) & 121.2 & \\ \\ \theta(Na \cdots O-H) (°) & 121.2 & \\ \end{array}$		1.853	MP2/6-31++G(d,p)		
$\begin{array}{ $		1.840	MP2/6-311++G(2d,2p)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[Na ⁺ -MeOH]	Geometrical parameters	Methods	References	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(O\cdots Na)(Å)$	2.213			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(O-H) (Å)	0.973			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r(O-C) (Å)	1.463	DD96/6.211C(dn)	This work	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<r(h-c)>(Å)</r(h-c)>	1.099	BF80/0-3110(d,p)	THIS WOLK	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ (Na···O-H) (°)	123.8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ (Na····O-C) (°)	129.1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(O \cdots Na)$ (Å)	2.191			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r(O-H) (Å)	0.964		This work	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r(O-C) (Å)	1.455	P2I VD/6 211C(dn)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<r(h-c)>(Å)</r(h-c)>	1.090	D3L11/0-3110(u,p)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ (Na····O-H) (°)	123.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	θ (Na····O-C) (°)	129.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(O \cdots Na)$ (Å)	2.206			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r(O-H) (Å)	0.964			
$<\mathbf{r}(\mathbf{H}-\mathbf{C})>(\mathbf{\mathring{A}})$ 1.090 \mathbf{B} SLTF/0-3TF+ $\mathbf{G}(\mathbf{u},p)$ S4Ta $\theta(\mathbf{N}\mathbf{a}\cdots\mathbf{O}-\mathbf{H})(^{\circ})$ 123.4 $\theta(\mathbf{N}\mathbf{a}\cdots\mathbf{O}-\mathbf{C})(^{\circ})$ 128.6 $\mathbf{r}(\mathbf{O}-\mathbf{H})(\mathbf{\mathring{A}})$ 2.228 $\mathbf{r}(\mathbf{O}-\mathbf{H})(\mathbf{\mathring{A}})$ 0.973 $\mathbf{r}(\mathbf{O}-\mathbf{C})(\mathbf{\mathring{A}})$ 1.486 BLYP/PWb S48 $\mathbf{\Theta}(\mathbf{N}\mathbf{a}\cdots\mathbf{O}-\mathbf{H})(^{\circ})$ 121.2 $\mathbf{\Theta}(\mathbf{N}\mathbf{a}\cdots\mathbf{O}-\mathbf{C})(^{\circ})$ 131.4	r(O-C) (Å)	1.457	$\mathbf{P2I} \mathbf{VP}/6 211 \mathbf{+} \mathbf{C}(\mathbf{d} \mathbf{n})$	\$410	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<r(h-c)>(Å)</r(h-c)>	1.090	$D_{2} = D_{1} = D_{2} = D_{1} = D_{1$	541a	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ (Na····O-H) (°)	123.4			
$r(O \cdots Na)$ (Å) 2.228 $r(O-H)$ (Å) 0.973 $r(O-C)$ (Å) 1.486 $$ (Å) 1.091 $\theta(Na \cdots O-H)$ (°) 121.2 $\theta(Na \cdots O-C)$ (°) 131.4	θ (Na····O-C) (°)	128.6			
$r(O-H)$ (Å)0.973 $r(O-C)$ (Å)1.486 $$ (Å)1.091 $\theta(Na\cdots O-H)$ (°)121.2 $\theta(Na\cdots O-C)$ (°)131.4	$r(O \cdots Na)$ (Å)	2.228			
$r(O-C)$ (Å) 1.486 BLYP/PW ^b S48 $$ (Å) 1.091 BLYP/PW ^b S48 $\theta(Na\cdots O-H)$ (°) 121.2 131.4 131.4	r(O-H) (Å)	0.973			
$<\mathbf{r}(H-C)>(Å)$ 1.091 $\mathbf{DL} \mathbf{I} \mathbf{P}/\mathbf{P} \mathbf{w}^{\circ}$ $\mathbf{S48}$ $\theta(Na\cdots O-H)(^{\circ})$ 121.2 $\theta(Na\cdots O-C)(^{\circ})$ 131.4	r(O-C) (Å)	1.486	DI VD/DU/h	C10	
$ \begin{array}{c} \theta(\text{Na}\cdots\text{O-H}) (^{\circ}) & 121.2 \\ \theta(\text{Na}\cdots\text{O-C}) (^{\circ}) & 131.4 \end{array} $	<r(h-c)>(Å)</r(h-c)>	1.091		540	
θ (Na···O-C) (°) 131.4	θ (Na···O-H) (°)	121.2			
	θ (Na···O-C) (°)	131.4			

$r(O \cdots Na)$ (Å)	2.209			
r(O-H) (Å)	0.972			
r(O-C) (Å)	1.473	BIVP/6~311++G(3df 3nd)	\$48	
<r(h-c)>(Å)</r(h-c)>	1.093	BL11/0-511++0(5ut,5pu)	540	
θ (Na····O-H) (°)	123.4			
θ (Na···O-C) (°)	129.1			
$r(O \cdots Na)$ (Å)	2.193			
r(O-H) (Å)	0.962			
r(OC) (Å)	1.452	D2I VD/6 211 $+ C(2 df 2md)$	C 10	
<r(h–c)>(Å)</r(h–c)>	1.087	B3L1P/0-311++O(3d1,3pd)	548	
θ (Na···O-H) (°)	123.3			
θ (Na···O-C) (°)	128.7			
$r(O \cdots Na)$ (Å)	2.252			
r(O-H) (Å)	0.961			
r(OC) (Å)	1.446	MD2/(211+C(24f2md))	C10	
<r(h–c)>(Å)</r(h–c)>	1.085	MP2/0-311++0(3d1,3pd)	540	
θ (Na···O-H) (°)	123.3			
θ (Na···O-C) (°)	129.5			
$r(O \cdots Na)$ (Å)	2.26	MP2 ^b	S49	
$r(O \cdots Na)$ (Å)	2.222	MP2/6-31G(d)		
	2.256	MP2/6-31G(d,p)		
	2.253	MP2/6-31+G(d)	S47	
	2.252	MP2/6-31++G(d,p)		
	2.256	MP2/6-311++G(2d,2p)		
[K ⁺ -MeOH]	Geometrical parameters	Methods	References	
$r(O \cdots K)$ (Å)	2.564			
r(O-H) (Å)	0.973			
r(O-C) (Å)	1.458		TT1 · 1	
<r(h-c)>(Å)</r(h-c)>	1.100	BP86/6-311G(d,p)	I his work	
$\theta(K \cdots O - H)$ (°)	124.5			
$\theta(K \cdots O - C)$ (°)	128.8			
$r(O\cdots K)$ (Å)	2.565			
r(O-H) (Å)	0.964			
r(O-C)(Å)	1.449	$\mathbf{D}\mathbf{U}\mathbf{V}\mathbf{D}/(11\mathbf{C}/1)$	This work	
<r(hc)>(Å)</r(hc)>	1.091	B3L1P/0-311G(d,p)		
θ(K····O–H) (°)	123.9			
$\theta(K \cdots O - C)$ (°)	123.9			

$r(O\cdots K)$ (Å)	2.573		
r(O-H) (Å)	0.973		
r(O-C) (Å)	1.48		C 4 0
<r(h-c)>(Å)</r(h-c)>	1.093	BL I P/P W ^o	548
$\theta(K \cdots O - H)$ (°)	125.7		
$\theta(K \cdots O - C)$ (°)	127.0		
$r(O\cdots K)$ (Å)	2.607		
r(O-H) (Å)	0.972		
r(O-C) (Å)	1.467	DIVD(6.211 + C(2df2md))	C 1 0
<r(h-c)>(Å)</r(h-c)>	1.094	BL1P/0-311++0(3u1,3pu)	548
$\theta(K \cdots O - H)$ (°)	123.2		
$\theta(K \cdots O - C)$ (°)	129.5		
$r(O\cdots K)$ (Å)	2.590		
r(O-H) (Å)	0.962		
r(O-C) (Å)	1.446	$P_{21}V_{P_{6}} = 211 + C_{2}(2df^{2}rd)$	S19
<r(h-c)>(Å)</r(h-c)>	1.088	B3L1F/0-311++O(3d1,3pd)	540
$\theta(K \cdots O - H)$ (°)	123.2		
$\theta(K \cdots O - C) (^{\circ})$	129.0		
$r(O\cdots K)$ (Å)	2.589		
r(O-H) (Å)	0.961		
r(O-C) (Å)	1.441	$MD2/6\ 211 \pm C(2df 2nd)$	S18
<r(h-c)>(Å)</r(h-c)>	1.086	Wif 2/0-511++O(5u1,5pu)	540
$\theta(K \cdots O - H)$ (°)	124.5		
$\theta(K \cdots O - C) (^{\circ})$	128.5		
$r(O\cdots K)$ (Å)	2.63	MP2 ^b	S49
$r(O\cdots K)$ (Å)	2.654	HE/6.21+C(d)	\$50
r(O-H) (Å)	0.950	HF/0-31+O(d)	330
$r(O\cdots K)$ (Å)	2.622	P2I VD/6 21+ $C(d)$	\$50
r(O-H) (Å)	0.971	$D_{2} = D_{2} = D_{2$	550
$r(O \cdots K)(Å)$	2.630	MD2/6.21+C(d)	\$50
r(O-H) (Å)	0.975	WIF 2/0-31+O(0)	330
$r(O \cdots K) (Å)$	2.657	PHE/DZB	S51
$\theta(K \cdots O - H)$ (°)	126.2		
		~	

[Li+-DEE]	Geo	ometrical paramet	ters		Methods	References	
	TT	TG	G	3			
$r(O\cdots Li)$ (Å)	1.817	1.819	1.8	10			
r(O-C) (Å)	1.464	1.463, 1.474	1.4′	78			
r(C-C) (Å)	1.519	1.522, 1.520	1.52	20			
$\theta(\text{Li}\cdots\text{O-C})(^{\circ})$	122.9	111.7, 133.4	123	.1	BP86/6-311G(d,p)	This work	
θ(C-O-C) (°)	114.1	114.8	113	.9			
Ø(C-C-O-C) (°)	180	-176.7, -74.6	84.	6			
$\emptyset(\text{Li} \cdots \text{O-C-C})(^{\circ})$	0	0.9, 108.5	-95	.4			
	TT	TG	G	3			
$r(O\cdots Li)(Å)$	1.797	1.799	1.79	91			
r(O-C) (Å)	1.455	1.453, 1.464	1.40	58			
r(C-C) (Å)	1.515	1.518, 1.517	1.5	17			
θ (Li···O-C) (°)	122.7	111.1, 133.3	122	.7	B3LYP/6-311G(d,p)	This work	
$\theta(C-O-C)(^{\circ})$	114.6	115.5	114	.6			
Ø(C-C-O-C) (°)	180.0	-176.7, -75.5	85.	3			
$\emptyset(\text{Li} \cdots \text{O-C-C})(^{\circ})$	0.0	0.7, 107.8	-94	.7			
$r(O\cdots Li)(Å)$		1.801					
r(O-C) (Å)		1.455					
r(CC) (Å)		1.515	I		B3I $VP/6-311++G(d n)$	S41a	
θ (Li···O-C) (°)		122.6		D5L11/0-511++G(d,p)		5410	
Ø(C-C-O-C) (°)		180.0					
$\emptyset(\text{Li} \cdots \text{O-C-C})(^{\circ})$		0.0					
$r(O\cdots Li)(Å)$		1.807					
r(O-C) (Å)		1.430			RHF/6-311+G(d,p)	S41b	
θ(C-O-C) (°)	1	115.2					
[Na ⁺ -DEE]	Geo	ometrical paramet	ters		Methods	References	
	TT	TG	G	3			
$r(O\cdots Na)$ (Å)	2.201	2.205	2.19	99			
r(O-C) (Å)	1.456	1.456, 1.466	1.40	58			
r(C-C) (Å)	1.520	1.521, 1.522	1.52	23			
θ (Na····O-C) (°)	123.6	117.1, 129.3	123.		BP86/6-311G(d,p)	This work	
$\theta(C-O-C)(^{\circ})$	112.9	113.6	113.3				
Ø(C-C-O-C) (°)	180.0	-176.7, -76.8	85.	9			
\emptyset (Na···O-C-C) (°)	0.0	1.6, 105.1	-94	.1			

	TT	TG	GG			
$r(O \cdots Na)$ (Å)	2.182	2.185	2.180			
r(O-C) (Å)	1.446	1.446, 1.456	1.458			
r(C-C) (Å)	1.516	1.518, 1.519	1.519			
θ (Na···O-C) (°)	123.2	116.1, 129.5	122.9	B3LYP/6-311G(d,p)	This work	
θ(C-O-C) (°)	113.7	114.4	114.1			
Ø(C-C-O-C) (°)	180.0	-177.3, -78.1	86.7			
$\emptyset(Na\cdots O-C-C)(^{\circ})$	0.0	0.9, 104	-93.3			
$r(O \cdots Na)$ (Å)		2.189				
r(O-C) (Å)		1.447				
r(C-C) (Å)		1.516		D2I VD/ $(211) + C(4)$	\mathbf{S}_{41a}	
θ (Na···O-C) (°)		123.1		B3L1P/0-311++O(0,p) 541a	
Ø(C-C-O-C) (°)		180.0				
\emptyset (Na···O-C-C) (°)		0.0				
[K ⁺ -DEE]	Ge	ometrical parame	ters	Methods	References	
	TT	TG	GG	1		
$r(O\cdots K)$ (Å)	2.560	2.554	2.547			
r(O-C)(Å)	1.452	1.453, 1.460	1.462			
r(C-C) (Å)	1.521	1.521, 1.525	1.524			
$\theta(K \cdots O - C)$ (°)	124.0	122.8, 124.2	123.4	BP86/6-311G(d,p)	This work	
θ(C-O-C) (°)	112.0	112.9	113.2			
Ø(C-C-O-C) (°)	180.0	-175.1, -75.1	85.2			
$\emptyset(K \cdots O - C - C) (^{\circ})$	0.0	2.5, 107.4	-94.8			
	TT	TG	GG			
$r(O\cdots K)$ (Å)	2.567	2.558	2.549			
r(O-C) (Å)	1.441	1.443, 1.449	1.451			
r(C-C) (Å)	1.517	1.517, 1.521	1.521			
$\theta(K \cdots O - C)$ (°)	123.7	122.4, 123.8	122.9	B3LYP/6-311G(d,p)	This work	
θ(C-O-C) (°)	112.5	113.8	114.1			
Ø(C-C-O-C) (°)	180.0	-175.3, -76.0	85.6			
$\emptyset(K \cdots O - C - C) (^{\circ})$	0.0	1.8, 107.0	-94.4			
[Li ⁺ -THF]	Ge	ometrical parame	ters	Methods	References	
$r(O\cdots Li)$ (Å)	· · ·	1.810	· ·	·		
r(O-C) (Å)		1.489				
θ (Li···O-C) (°)		125.5		DDQ(/(211C)/dm)	This would	
θ(C-O-C) (°)	109.0			Drov/0-3110(a,p)	I IIIS WORK	
Ø(C-C-O-C) (°)		12.7				
$\emptyset(\text{Li} \cdots \text{O-C-C})$ (°)		-167.3				

$r(O\cdots Li)(Å)$	1.791			
r(O-C) (Å)	1.480			
θ (Li···O-C) (°)	125.3	$\mathbf{D}\mathbf{U}\mathbf{V}\mathbf{D}(\mathbf{C}11\mathbf{C}(1))$	T1 · 1	
$\theta(C-O-C)$ (°)	109.4	B3LYP/6-311G(d,p)	This work	
$\emptyset(C-C-O-C)(^{\circ})$	12.4			
$\emptyset(\text{Li}\cdots \text{O-C-C})(^{\circ})$	-167.6			
$r(O\cdots Li)(Å)$	1.798			
r(O-C) (Å)	1.451	RHF/6-311+G(d,p)	S41b	
θ(C-O-C) (°)	110.5			
[Na ⁺ -THF]	Geometrical parameters	Methods	References	
$r(O\cdots Na)$ (Å)	2.195			
r(O-C) (Å)	1.480			
θ (Na···O-C) (°)	125.6	$DD0(/(211C(d_{r})))$	T1.:	
$\theta(C-O-C)(^{\circ})$	108.9	BP80/0-311G(d,p)	THIS WOLK	
$\emptyset(C-C-O-C)(^{\circ})$	12.6			
$\emptyset(Na\cdots O-C-C)(^{\circ})$	-167.4			
$r(O\cdots Na)$ (Å)	2.176			
r(O-C) (Å)	1.469			
θ (Na···O-C) (°)	125.3	D2IVD/(211C(dn))	This work	
θ(C-O-C) (°)	109.4	B3L1P/0-3110(a,p)	THIS WOLK	
Ø(C-C-O-C) (°)	12.3			
$\emptyset(Na \cdots O - C - C)$ (°)	-167.7			
[K ⁺ -THF]	Geometrical parameters	Methods	References	
$r(O\cdots K)$ (Å)	2.542		-	
r(O-C) (Å)	1.473			
$\theta(K \cdots O - C) (^{\circ})$	125.6	DD0(4/2) = 211C(4 m)	This work	
$\theta(C-O-C)(^{\circ})$	108.8	BP80/0-311G(d,p)	T HIS WOLK	
Ø(C-C-O-C) (°)	12.6			
$\emptyset(K \cdots O - C - C)$ (°)	-167.4			
$r(O\cdots K)$ (Å)	2.544			
r(O-C) (Å)	1.462			
$\theta(K \cdots O - C) (^{\circ})$	125.3	D2IVD/6211C(4-a)	This work	
$\theta(C-O-C)(^{\circ})$	109.3	D3L11/0-3110(u,p)		
Ø(C-C-O-C) (°)	12.3			
$\emptyset(K \cdots O - C - C) (^{\circ})$	-167.7			

^a "r", " θ ", and " \emptyset " denote the bond distances, bond angles, and dihedral angles, respectively.

^b Detailed information on the optimisation methods used is provided in corresponding references.

		BP86/6-3110	G(d,p)			B3LYP/6-311G(d,p)			
	ΔE^{ZPE}	$\Delta E^{ZPE+BSSE}$	ΔH	ΔG	ΔE^{ZPE}	$\Delta E^{ZPE+BSSE}$	ΔH	ΔG	
[Li ⁺ -L]									
H ₂ O	156.1	140.2	160.4	131.9	166.3	150.1	170.7	142.0	
THF	180.3	170.9	182.8	150.6	193.3	183.5	195.9	163.8	
DEE,TT	178.5	169.9	180.2	151.9	190.5	181.6	192.3	164.2	
DEE,TG	177.3	168.5	179.4	149.4	189.7	180.6	191.9	161.6	
DEE,GG	173.2	164.3	175.1	146.2	185.5	176.0	187.5	157.9	
МеОН	161.1	148.9	163.7	135.1	173.5	160.9	176.2	147.2	
DCM	99.1	93.9	101.1	71.3	107.9	102.6	110.0	79.7	
[Na ⁺ -L]									
H ₂ O	111.7	98.9	115.2	88.0	119.5	106.5	123.1	95.7	
THF	125.1	117.0	126.4	95.9	134.9	126.5	136.2	105.9	
DEE,TT	121.5	114.0	122.6	93.5	131.2	123.4	132.3	103.4	
DEE,TG	120.3	112.7	121.3	92.8	130.0	122.0	131.1	101.7	
DEE,GG	117.8	110.3	118.6	90.8	127.0	119.1	127.9	99.7	
МеОН	112.1	102.1	113.7	86.4	121.5	111.2	123.3	95.6	
DCM	63.2	59.1	63.8	36.4	70.5	66.3	71.2	43.2	
[K ⁺ -L]									
H ₂ O	83.0	72.2	86.1	60.3	86.7	76.0	89.9	63.9	
THF	91.4	85.3	92.1	63.4	96.3	89.9	97.0	68.6	
DEE,TT	83.8	78.2	84.6	55.9	88.7	83.0	89.5	60.9	
DEE,TG	84.1	78.3	84.7	56.9	88.9	82.8	89.6	61.4	
DEE,GG	84.7	78.7	85.0	58.7	89.1	82.9	89.5	63.0	
MeOH	81.9	73.7	83.0	57.2	86.7	78.4	88.0	61.9	
DCM	39.7	37.5	39.7	15.3	43.5	41.2	43.5	18.7	

Table S6: Calculated energies (kJ.mol⁻¹) for the dissociation process, $[M^+-L] \rightarrow M^+ + L$.

	В	P86/6	311G(d,p)			В	B3LYP/	6-311G(0	d,p)	
	H ₂ O			M ⁺ -H ₂ O	1		H ₂ O			M ⁺ -H ₂ O	1
	-		Li	Na	K		-		Li	Na	K
01	-0.873	01	-1.017	-0.988	-0.969	01	-0.877	01	-1.019	-0.990	-0.970
H2	0.436	M2	0.980	0.988	0.992	H2	0.438	M2	0.980	0.988	0.993
H3	0.436	H3	0.518	0.500	0.489	H3	0.438	H3	0.519	0.501	0.489
		H4	0.518	0.500	0.489			H4	0.519	0.501	0.489
BP86/6-311G(d,p)						E	B3LYP/	6-311G(d,p)		
	THF		[M ⁺ -THF]		THF			M ⁺ -THF]
			Li	Na	K				Li	Na	K
C1	-0.045	C1	-0.045	-0.046	-0.047	C1	-0.016	C1	-0.016	-0.017	-0.018
H2	0.161	H2	0.192	0.185	0.181	H2	0.152	H2	0.183	0.175	0.171
H3	0.181	H3	0.201	0.193	0.190	H3	0.171	H3	0.191	0.183	0.179
C4	-0.429	C4	-0.427	-0.426	-0.426	C4	-0.408	C4	-0.406	-0.406	-0.405
H5	0.215	H5	0.248	0.243	0.240	H5	0.204	H5	0.236	0.231	0.228
H6	0.200	H6	0.220	0.216	0.214	H6	0.190	H6	0.210	0.206	0.203
C7	-0.429	C7	-0.427	-0.426	-0.426	C7	-0.408	C7	-0.406	-0.406	-0.405
H8	0.215	H8	0.248	0.243	0.240	H8	0.204	H8	0.236	0.231	0.228
H9	0.200	H9	0.220	0.216	0.214	H9	0.190	H9	0.210	0.206	0.203
C10	-0.045	C10	-0.045	-0.046	-0.047	C10	-0.016	C10	-0.016	-0.017	-0.018
H11	0.181	H11	0.201	0.193	0.190	H11	0.171	H11	0.191	0.183	0.179
H12	0.161	H12	0.192	0.185	0.181	H12	0.152	H12	0.183	0.175	0.171
013	-0.567	013	-0.749	-0.707	-0.685	013	-0.587	013	-0.765	-0.723	-0.699
		M14	0.969	0.976	0.983			M14	0.969	0.976	0.984
	D	D86/6 '	211C(dn))			P	21 VD/	6 21100	1 n)	
	D	r 80/0	<u>5110(u,p</u>) M+ DEE	1			5LIF/	0-3110(0	1,p) M+ DEE	1
	DEE (TT)		l	(TT)	4]		DEE (TT)		l	$\frac{\mathbf{W} - \mathbf{D} \mathbf{U} \mathbf{U}}{(\mathbf{T} \mathbf{T})}$	·]
	DEE(11)		ті	(11) Na	K		(11)		Ti	(11) Na	K
C1	0.038	C1	0.027	0.028	0.020	C1	0.007	C1	0.007	0.008	0.000
	-0.038	U1 Н2	-0.037	-0.038	-0.039		-0.007	U1 Н2	-0.007	-0.008	-0.009
$\begin{bmatrix} 112\\ C3 \end{bmatrix}$	-0.050	C3	-0.037	-0.038	-0.039	C3	0 147	C3	-0.007	-0.008	-0.009
	-0.571	С5 Н4	0.198	0.192	0.187		-0 591	С5 Н4	0.188	0.182	-0.007
05	0.157	05	-0.715	-0.681	-0.663	05	0 147	05	-0.731	-0.698	-0.678
C6	-0.609	Ю5 Н6	0.198	0.192	0.187	C6	-0 579	Ю5 Н6	0.188	0.182	-0.070
H7	0.007	C7	-0.646	-0.637	-0.631	H7	0.196	C7	-0.617	-0.607	-0.601
	0.200	С7 Н8	0.261	0.255	0.250		0.195	С7 Н8	0.250	0 244	0.238
HQ	0.200	H9	0.201	0.202	0.250	H9	0.195	H9	0.250	0.192	0.250
C10	0.200	H10	0.209	0.202	0.190	C10	0.170	H10	0.199	0.192	0.188
	-0.157	H11	0.209	0.102	0.197	H11	_0 570	H11	0.199	0.192	0.177
H12	0.009	C12	-0 646	-0.637	-0.631	H12	0.577	C12	-0.617	-0.607	-0 601
H13	0.200	H13	0.040	0.007	0 198	H13	0 195	H13	0 199	0 192	0 188
H14	0.200	H14	0.209	0.202	0 198	H14	0.196	H14	0 199	0 192	0 188
H15	0.157	H15	0.209	0.255	0.150	H15	0 147	H15	0.250	0 244	0.238
	0.137	1113	0.201	0.233	0.230	1113	0.14/	1115	0.230	0.244	0.230

Table S7: Computed charge densities (natural charges, e) on selected centres of L and $[M^+-L]$ structures.

		M16	0.928	0.945	0.961			M16	0.928	0.945	0.962
	R	P86/6_3	811G(d n)			B	21 VP/	6-311G(c	ln)	
	DEE	1 00/0	<u>ري، ۱۱۵(م, ار</u>	/ M+_DEE			DEE	JL117)0116-0	M+_DEE	1
	(GG)		L	(GG)	·]		(GG)		L	(GG)	1
	(00)		Li	(OO) Na	К		(00)		Li	(OO) Na	К
C1	-0.043	C1	-0.042	-0.042	-0.043	C1	-0.011	C1	-0.012	-0.011	-0.012
C2	0.182	H2	0.190	0.183	0.180	C2	0.172	H2	0.180	0.173	0.169
H3	-0.043	C3	-0.042	-0.042	-0.043	H3	-0.011	C3	-0.012	-0.011	-0.012
04	0.182	H4	0.190	0.183	0.180	04	0.172	H4	0.180	0.173	0.169
Н5	-0.572	05	-0.741	-0.702	-0.679	H5	-0.592	05	-0.757	-0.719	-0.695
C6	-0.625	C6	-0.631	-0.629	-0.628	C6	-0.594	C6	-0.602	-0.600	-0.598
H7	0.199	H7	0.220	0.218	0.216	H7	0.189	H7	0.210	0.208	0.206
H8	0.206	H8	0.211	0.205	0.202	H8	0.197	H8	0.200	0.194	0.191
H9	0.206	H9	0.243	0.238	0.234	H9	0.195	H9	0.231	0.226	0.223
H10	-0.625	C10	-0.631	-0.629	-0.628	H10	-0.594	C10	-0.602	-0.600	-0.598
C11	0.199	H11	0.220	0.218	0.216	C11	0.189	H11	0.210	0.208	0.206
H12	0.206	H12	0.211	0.205	0.202	H12	0.197	H12	0.200	0.194	0.191
H13	0.206	H13	0.243	0.238	0.234	H13	0.195	H13	0.231	0.226	0.223
H14	0.160	H14	0.201	0.194	0.191	H14	0.149	H14	0.191	0.184	0.180
H15	0.160	H15	0.201	0.194	0.191	H15	0.149	H15	0.191	0.184	0.180
		M16	0.959	0.971	0.977			M16	0.959	0.970	0.978
	B	P86/6-3	311G(d,p))			В	B3LYP/	6-311G(c	l,p)	
	MeOH		[]	M ⁺ -MeOl	H]		MeOH		[]	M ⁺ -MeOI	H]
			Li	Na	K				Li	Na	K
C1	-0.221	C1	-0.211	-0.212	-0.215	C1	-0.186	C1	-0.176	-0.178	-0.181
H2	0.176	H2	0.191	0.183	0.179	H2	0.168	H2	0.184	0.175	0.170
H3	0.152	03	-0.864	-0.829	-0.808	H3	0.144	03	-0.874	-0.839	-0.817
H4	0.152	H4	0.202	0.193	0.188	H4	0.144	H4	0.194	0.186	0.180
05	-0.698	H5	0.202	0.193	0.188	05	-0.712	H5	0.194	0.186	0.180
H6	0.440	H6	0.507	0.490	0.481	H6	0.440	H6	0.507	0.490	0.480
		M7	0.972	0.981	0.986			M7	0.972	0.981	0.987
				<u></u>					<u> </u>	1 \	
	BON	P86/6-2	311G(d,p)	()		BCM	35LYP/	6-311G(C	1,p)	<u>a</u>
	DCM		L. T:	M'-DCN			DCM		L. T:	M'-DCN	l] V
C1	0.200	C1	$\frac{\text{LI}}{0.247}$	Na	<u> </u>	C1	0.246	C1	$\frac{\text{LI}}{0.212}$	Na 0.221	<u>K</u>
	-0.380	UI UN	-0.347	-0.333	-0.330		-0.340	UI UN	-0.313	-0.321	-0.322
	0.208	п2 Ц2	0.242	0.230	0.231		0.199	п2 Ц2	0.234	0.228	0.223
	0.208	ПЭ С14	0.242	0.230	0.231		0.199	П3 С14	0.234	0.228	0.223
C14	-0.017	C14	-0.001	-0.028	-0.03/	C14	-0.026	C14	-0.008	-0.035	-0.046
	-0.01/		-0.001	-0.028	-0.03/		-0.026		-0.008	-0.035	-0.040
		IVIO	0.805	0.938	0.96/			IVID	0.801	0.930	0.968

	BP86/	6-311G(d,p)			B3LY	P/6-311G(d	,p)	
	Me ₄ cyclen	[M(Me ₄ cycle	n)]+		Me ₄ cyclen	[M($[M(Me_4cyclen)]^+$	
		Li	Na	Κ			Li	Na	Κ
C1*	-0.384	-0.387	-0.389	-0.393	C1*	-0.349	-0.353	-0.355	-0.359
H2*	0.158	0.195	0.192	0.190	H2*	0.149	0.185	0.182	0.181
H3*	0.196	0.209	0.207	0.202	H3*	0.185	0.198	0.196	0.191
H4*	0.195	0.204	0.203	0.201	H4*	0.184	0.194	0.193	0.190
C17	-0.207	-0.209	-0.213	-0.214	C17	-0.178	-0.181	-0.184	-0.185
H18	0.199	0.204	0.202	0.201	H18	0.186	0.192	0.190	0.189
H19	0.170	0.212	0.209	0.204	H19	0.158	0.200	0.196	0.192
C20	-0.198	-0.206	-0.207	-0.208	C20	-0.169	-0.178	-0.179	-0.180
H21	0.167	0.211	0.205	0.200	H21	0.156	0.198	0.193	0.187
H22	0.201	0.215	0.212	0.207	H22	0.188	0.203	0.200	0.195
N41	-0.497	-0.570	-0.567	-0.556	N41	-0.511	-0.582	-0.578	-0.567
N42	-0.486	-0.570	-0.567	-0.556	N42	-0.501	-0.582	-0.578	-0.567
N43	-0.497	-0.570	-0.567	-0.556	N43	-0.511	-0.582	-0.578	-0.567
N44	-0.486	-0.570	-0.567	-0.556	N44	-0.501	-0.582	-0.578	-0.567
M45	_	0.690	0.786	0.865	M45	_	0.696	0.787	0.870

Table S8: Computed charge densities (natural charges, e) on selected centres of Me_4 cyclen and $[M(Me_4$ cyclen)]⁺ structures.

Table S9: Computed BP86 charge densities (natural charges	, e) on selected	centres of the
lowest M-L-1a minimum energy structures.			

M-H2	2 0-1 a			
		Li	Na	K
C1*	(C1)	-0.388	-0.387	-0.392
H2*		0.193	0.189	0.188
H3*		0.204	0.206	0.201
H4*		0.201	0.201	0.200
C17	(C5)	-0.209	-0.211	-0.213
H18		0.204	0.202	0.201
H19		0.208	0.206	0.201
C20	(C6)	-0.205	-0.206	-0.207
H21		0.206	0.201	0.198
H22		0.211	0.210	0.206
N41	(N1)	-0.548	-0.553	-0.547
N42	(N2)	-0.548	-0.553	-0.547
N43	(N3)	-0.548	-0.553	-0.547
N44	(N4)	-0.548	-0.553	-0.547
045		-0.890	-0.911	-0.914
M46		0.593	0.713	0.820
H47	(H1)	0.492	0.485	0.476
H48		0.492	0.485	0.476

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Li Na K C1* (C1) -0.383 -0.385 -0.390 H2* 0.191 0.188 0.187 H3* 0.208 0.206 0.201 H4* 0.200 0.201 0.200 C17 (C5) -0.207 -0.209 -0.212 H18 0.203 0.202 0.201 C20 (C6) -0.205 -0.204 -0.206 H21 0.205 0.201 0.206 C41 (C16) -0.038 -0.039 -0.044 H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44 (C15) -0.423 -0.425 H44 0.234 0.233 0.232 H44 0.211 0.211 0.210 C47 (C14) -0.423 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.210 0.562 <tr< th=""><th>M-TI</th><th>HF-1a</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	M-TI	HF-1a							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Li	Na	K				
H2* 0.191 0.188 0.187 H3* 0.208 0.206 0.201 H4* 0.200 0.201 0.200 C17 (C5) -0.207 -0.209 -0.212 H18 0.203 0.202 0.201 H19 0.207 0.205 -0.206 H21 0.205 0.201 0.197 H22 0.210 0.210 0.206 C41 (C16) -0.038 -0.039 -0.044 H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44 (C15) -0.423 -0.424 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C50 (C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53 (N1) -0.552 -0.545 N54 (N2) -0.544 -0.553 -0.545	C1*	(C1)	-0.383	-0.385	-0.390				
H3* 0.208 0.206 0.201 H4* 0.200 0.201 0.200 C17 (C5) -0.207 -0.209 -0.212 H18 0.203 0.202 0.201 H19 0.207 0.205 0.201 C20 (C6) -0.205 -0.204 -0.206 H21 0.205 0.201 0.197 H22 0.210 0.210 0.206 C41 (C16) -0.038 -0.039 -0.044 H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44 (C15) -0.423 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47 (C14) -0.423 -0.425 H48 0.234 0.233 0.232 H48 0.234 0.233 0.232 H49 0.111 0.210 0.50 C50 (C13) -0.552 -0.545 N54 (H2*		0.191	0.188	0.187				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3*		0.208	0.206	0.201				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4*		0.200	0.201	0.200				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	(C5)	-0.207	-0.209	-0.212				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H18		0.203	0.202	0.201				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H19		0.207	0.205	0.201				
H21 0.205 0.201 0.197 H22 0.210 0.210 0.206 C41(C16) -0.038 -0.039 -0.044 H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44(C15) -0.423 -0.424 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47(C14) -0.423 -0.424 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 H51 0.191 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 N55(N3) -0.552 -0.545 N56(N4) -0.544 -0.625 M-DEE-1aLiNaKC1*(C1)-0.386C1*(C1)-0.387C1*(C1)-0.386C1* 0.205 H3* 0.206 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 H4* 0.202 H4* 0.203 H18 0.202	C20	(C6)	-0.205	-0.204	-0.206				
H22 0.210 0.210 0.206 C41(C16) -0.038 -0.039 -0.044 H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44(C15) -0.423 -0.424 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47(C14) -0.423 -0.424 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 N55(N3) -0.552 -0.545 N56(N4) -0.544 -0.625 M58 0.585 0.692 0.801 HLiNaKC1*(C1) -0.386 C1* 0.190 H2* 0.190 H2* 0.206 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 H4* 0.202 H4* 0.203 H18 0.201	H21		0.205	0.201	0.197				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H22		0.210	0.210	0.206				
H42 0.180 0.178 0.174 H43 0.191 0.189 0.186 C44(C15) -0.423 -0.424 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47(C14) -0.423 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 N55(N3) -0.552 -0.545 N56(N4) -0.544 -0.625 M58 0.585 0.692 0.801 M-DEE-1aLiNaKC1*(C1) -0.387 C1*(C1) -0.386 C1*(C1) 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.202 H4* 0.200 C17(C5) -0.207 C17(C5) -0.207 C17(C5)H4* 0.200 H18 0.202 H18 0.201	C41	(C16)	-0.038	-0.039	-0.044				
H43 0.191 0.189 0.186 C44(C15) -0.423 -0.424 -0.425 H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47(C14) -0.423 -0.424 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.552 -0.545 N54(N2) -0.544 -0.553 -0.545 N55(N3) -0.552 -0.545 N56(N4) -0.544 -0.625 M58 0.585 0.692 0.801 M-DEE-1aM-DE <	H42		0.180	0.178	0.174				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H43		0.191	0.189	0.186				
H45 0.234 0.233 0.232 H46 0.211 0.211 0.210 C47(C14) -0.423 -0.424 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 -0.545 0.56 (N4) -0.544 -0.553 -0.545 N56(N4) -0.544 -0.625 M58 0.585 0.692 0.801 M-DEE-1a LiNaKC1*(C1) -0.386 C1*(C1) -0.387 C1*C1* 0.192 H2* 0.190 H2* 0.192 H2* 0.190 H2* 0.206 H3* 0.205 H4* 0.200 H4* 0.202 H4* 0.200 H4* 0.202 H18 0.203 H18 0.201	C44	(C15)	-0.423	-0.424	-0.425				
H46 0.211 0.211 0.210 C47(C14) -0.423 -0.424 -0.425 H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.552 -0.545 N54(N2) -0.544 -0.553 -0.545 N56(N4) -0.544 -0.625 N58 0.585 0.692 0.801 M-DEE-1a KC1*(C1) -0.386 C1*(C1) -0.387 C1*(C1) -0.391 H2* 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17(C5) -0.207 C17(C5) -0.212 H18 0.203 H18 0.202 H18 0.201	H45		0.234	0.233	0.232				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H46		0.211	0.211	0.210				
H48 0.234 0.233 0.232 H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 -0.552 -0.545 N56(N4) -0.544 -0.553 -0.545 N56(N4) -0.544 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 MMedee - 1NaKC1*(C1) -0.386 C1*(C1) -0.387 C1*(C1) -0.387 0.192 $H2*$ 0.190 H2* 0.192 H2* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 C17(C5) -0.207 C17H18 0.203 H18 0.202 H18 0.202	C47	(C14)	-0.423	-0.424	-0.425				
H49 0.211 0.211 0.210 C50(C13) -0.038 -0.039 -0.044 H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53(N1) -0.552 -0.545 N54(N2) -0.544 -0.553 -0.545 0.552 -0.545 N56(N4) -0.544 -0.553 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 -0.387 $C1^*$ C1*(C1) -0.386 C1*(C1) -0.387 C1*(C1) -0.386 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.200 H4* 0.203 H18 0.202 H18 0.203 H18 0.202 H18 0.201	H48		0.234	0.233	0.232				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H49		0.211	0.211	0.210				
H51 0.191 0.189 0.186 H52 0.180 0.178 0.174 N53 $(N1)$ -0.552 -0.552 -0.545 N54 $(N2)$ -0.544 -0.553 -0.545 N55 $(N3)$ -0.552 -0.545 N56 $(N4)$ -0.544 -0.553 -0.545 O57 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 M-DEE-1aLiNaKC1* $(C1)$ -0.386 $C1*$ $(C1)$ -0.387 $C1*$ $(C1)$ -0.391 H2* 0.192 H2* 0.190 H2* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 $(C5)$ -0.207 $C17$ $(C5)$ -0.212 H18 0.203 H18 0.202 H18 0.201	C50	(C13)	-0.038	-0.039	-0.044				
H52 0.180 0.178 0.174 N53(N1) -0.552 -0.552 -0.545 N54(N2) -0.544 -0.553 -0.545 N55(N3) -0.552 -0.545 N56(N4) -0.544 -0.553 -0.545 O57 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 M-DEE-1aKC1*(C1) -0.386 C1*(C1) -0.387 C1*C1*(C1) -0.386 C1*C1*0.192H2* 0.190 H2* 0.192 H2* 0.190 H2*0.206H3* 0.205 H3* 0.206 H4* 0.202 H4* 0.200 H4* 0.202 C17(C5) -0.207 C17H18 0.203 H18 0.202 H18 0.201 H16 0.202	H51		0.191	0.189	0.186				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H52		0.180	0.178	0.174				
N54 $(N2)$ -0.544 -0.553 -0.545 N55 $(N3)$ -0.552 -0.545 N56 $(N4)$ -0.544 -0.553 -0.545 O57 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 M-DEE-1a LiNaKC1* $(C1)$ -0.386 $C1*$ $(C1)$ -0.387 $C1*$ $(C1)$ -0.391 H2* 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 $(C5)$ -0.207 $C17$ $(C5)$ -0.212 H18 0.203 H18 0.202 H18 0.201	N53	(N1)	-0.552	-0.552	-0.545				
N55 $(N3)$ -0.552 -0.552 -0.545 N56 $(N4)$ -0.544 -0.553 -0.545 O57 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 M-DEE-1aLiNaKC1* $(C1)$ -0.386 $C1*$ $(C1)$ -0.387 $C1*$ $(C1)$ -0.391 H2* 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 $(C5)$ -0.207 $C17$ $(C5)$ -0.209 $C17$ $(C5)$ -0.201 H18 0.203 H18 0.202 H18 0.201	N54	(N2)	-0.544	-0.553	-0.545				
N56 $(N4)$ -0.544 -0.553 -0.545 O57 -0.623 -0.631 -0.625 M58 0.585 0.692 0.801 M-DEE-1a LiNaKC1* $(C1)$ -0.386 $C1^*$ $(C1)$ -0.387 $C1^*$ $(C1)$ -0.391 H2* 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 $(C5)$ -0.207 $C17$ $(C5)$ -0.209 $C17$ $(C5)$ -0.212 H18 0.203 H18 0.202 H18 0.201	N55	(N3)	-0.552	-0.552	-0.545				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N56	(N4)	-0.544	-0.553	-0.545				
M58 0.585 0.692 0.801 M-DEE-1aNaKC1*(C1) -0.386 C1*(C1) -0.387 C1*(C1) -0.391 H2*0.192H2*0.190H2*0.188H3*0.206H3*0.205H3*0.203H4*0.200H4*0.202H4*0.200C17(C5) -0.207 C17(C5) -0.209 C17(C5) -0.212 H180.203H180.202H180.201H14*	057		-0.623	-0.631	-0.625				
M-DEE-1a Li Na K C1* (C1) -0.386 C1* (C1) -0.387 C1* (C1) -0.391 H2* 0.192 H2* 0.190 H2* 0.188 H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 (C5) -0.207 C17 (C5) -0.209 C17 (C5) -0.212 H18 0.203 H18 0.202 H18 0.201	M58		0.585	0.692	0.801				
LiNaK $C1^*$ $(C1)$ -0.386 $C1^*$ $(C1)$ -0.387 $C1^*$ $(C1)$ -0.391 $H2^*$ 0.192 $H2^*$ 0.190 $H2^*$ 0.188 $H3^*$ 0.206 $H3^*$ 0.205 $H3^*$ 0.203 $H4^*$ 0.200 $H4^*$ 0.202 $H4^*$ 0.200 $C17$ $(C5)$ -0.207 $C17$ $(C5)$ -0.209 $C17$ $(C5)$ -0.212 $H18$ 0.203 $H18$ 0.202 $H18$ 0.201	M-DI	EE-19							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Li			Na			K
$H2^*$ 0.192 $H2^*$ 0.190 $H2^*$ 0.190 $H2^*$ 0.188 $H3^*$ 0.206 $H3^*$ 0.205 $H3^*$ 0.203 $H4^*$ 0.200 $H4^*$ 0.202 $H4^*$ 0.200 $C17$ $(C5)$ -0.207 $C17$ $(C5)$ -0.209 $H18$ 0.203 $H18$ 0.202 $H18$ 0.201	C1*	(C1)	-0.386	C1*	(C1)	-0 387	C1*	(C1)	-0 391
H3* 0.206 H3* 0.205 H3* 0.203 H4* 0.200 H4* 0.202 H4* 0.200 C17 (C5) -0.207 C17 (C5) -0.209 C17 (C5) -0.212 H18 0.203 H18 0.202 H18 0.201	H2*	(01)	0.192	H2*	(01)	0.190	H2*	(01)	0.188
H4* 0.200 H4* 0.202 H4* 0.200 C17 (C5) -0.207 C17 (C5) -0.209 C17 (C5) -0.212 H18 0.203 H18 0.202 H18 0.201	H3*		0 206	H3*		0 205	H3*		0 203
C17 (C5) -0.207 C17 (C5) -0.209 C17 (C5) -0.212 H18 0.203 H18 0.202 H18 0.201	H4*		0.200	H4*		0 202	H4*		0 200
H18 0.203 H18 0.202 H18 0.201	C17	(C5)	-0.207	C17	(C5)	-0.209	C17	(C5)	-0.212
	H18	()	0.203	H18	()	0.202	H18	()	0.201
H19 0.208 H19 0.205 H19 0.201	H19		0.208	H19		0.205	H19		0.201
C20 (C6) -0.204 C20 (C6) -0.204 C20 (C6) -0.206	C20	(C6)	-0.204	C20	(C6)	-0.204	C20	(C6)	-0.206
H21 0.206 H21 0.201 H21 0.197	H21		0.206	H21	× /	0.201	H21		0.197
H22 0.210 H22 0.211 H22 0.206	H22		0.210	H22		0.211	H22		0.206

C41	(C14)	-0.034	C41	(C14)	-0.036	C41	(C14)	-0.040
H42		0.186	H42		0.186	H42		0.179
C43	(C13)	-0.034	C43	(C13)	-0.036	C43	(C13)	-0.040
H44		0.186	H44		0.185	H44		0.179
N45	(N1)	-0.546	N45	(N1)	-0.553	N45	(N1)	-0.543
N46	(N2)	-0.552	N46	(N2)	-0.554	N46	(N2)	-0.542
N47	(N3)	-0.546	N47	(N3)	-0.553	N47	(N3)	-0.543
N48	(N4)	-0.552	N48	(N4)	-0.555	N48	(N4)	-0.542
049		-0.615	O49		-0.625	O49		-0.601
C50	(C16)	-0.631	Na50		0.661	H50		0.179
H51		0.213	C51	(C16)	-0.623	C51	(C15)	-0.613
H52		0.210	H52		0.212	H52		0.234
H53		0.230	H53		0.205	H53		0.203
C54	(C15)	-0.631	H54		0.226	H54		0.203
H55		0.213	C55	(C15)	-0.623	H55		0.179
H56		0.210	H56		0.212	C56	(C16)	-0.613
H57		0.230	H57		0.206	H57		0.203
H58		0.186	H58		0.226	H58		0.203
H59		0.186	H59		0.185	H59		0.234
Li60		0.566	H60		0.185	K60		0.729
	$\mathbf{OU} 1_{0}$							
IVI-IVI	eon-ra							
		Li	<u>a</u> t t	(24)	Na		(61)	K
C1*	(C1)	Li -0.386	C1*	(C1)	Na -0.387	C1*	(C1)	K -0.391
C1* H2*	(C1)	Li -0.386 0.192	C1* H2*	(C1)	Na -0.387 0.190	C1* H2*	(C1)	K -0.391 0.188
C1* H2* H3*	(C1)	Li -0.386 0.192 0.208	C1* H2* H3*	(C1)	Na -0.387 0.190 0.205	C1* H2* H3*	(C1)	K -0.391 0.188 0.202
C1* H2* H3* H4*	(C1)	Li -0.386 0.192 0.208 0.198	C1* H2* H3* H4*	(C1)	Na -0.387 0.190 0.205 0.200	C1* H2* H3* H4*	(C1)	K -0.391 0.188 0.202 0.200
C1* H2* H3* H4* C17	(C1) (C5)	Li -0.386 0.192 0.208 0.198 -0.208	C1* H2* H3* H4* C17	(C1) (C5)	Na -0.387 0.190 0.205 0.200 -0.211	C1* H2* H3* H4* C17	(C1) (C5)	K -0.391 0.188 0.202 0.200 -0.213
C1* H2* H3* H4* C17 H18	(C1) (C5)	Li -0.386 0.192 0.208 0.198 -0.208 0.203	C1* H2* H3* H4* C17 H18	(C1) (C5)	Na -0.387 0.190 0.205 0.200 -0.211 0.202	C1* H2* H3* H4* C17 H18	(C1) (C5)	K -0.391 0.188 0.202 0.200 -0.213 0.200
C1* H2* H3* H4* C17 H18 H19	(C1) (C5)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.203	C1* H2* H3* H4* C17 H18 H19	(C1) (C5)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205	C1* H2* H3* H4* C17 H18 H19	(C1) (C5)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201
C1* H2* H3* H4* C17 H18 H19 C20 H21	(C1) (C5) (C6)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205	C1* H2* H3* H4* C17 H18 H19 C20	(C1) (C5) (C6)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205	C1* H2* H3* H4* C17 H18 H19 C20	(C1) (C5) (C6)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.107
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22	(C1) (C5) (C6)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210	C1* H2* H3* H4* C17 H18 H19 C20 H21	(C1) (C5) (C6)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.201	C1* H2* H3* H4* C17 H18 H19 C20 H21	(C1) (C5) (C6)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41	(C1) (C5) (C6)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 0.208	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41	(C1) (C5) (C6)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41	(C1) (C5) (C6)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 0.215
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42	(C1) (C5) (C6)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22	(C1) (C5) (C6)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41	(C1) (C5) (C6)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.170
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N42	(C1) (C5) (C6)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 0.548	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N42	(C1) (C5) (C6)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 0.552	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N42	(C1) (C5) (C6)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44	(C1) (C5) (C6) (N1) (N2)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44	(C1) (C5) (C6) (N1)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 0.554	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43	(C1) (C5) (C6) (N1)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45	(C1) (C5) (C6) (N1) (N2) (N2)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44	(C1) (C5) (C6) (N1) (N2) (N2)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 0.554	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44	(C1) (C5) (C6) (N1) (N2) (N2)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.546 0.547
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.548	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N44	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.546 -0.547
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.549 -0.550 0.721	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553 -0.553 0.748	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.546 -0.547 -0.547
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47 H48	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.548 -0.549 -0.550 -0.731	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47 Na48	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553 -0.553 -0.553 -0.748	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.546 -0.547 -0.547 -0.547
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46 O47 H48 U40	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.548 -0.549 -0.550 -0.731 0.181 0.182	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N44 N45 N46 O47 Na48 H40	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553 -0.553 -0.553 -0.748 0.700 0.182	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46 O47 H48 U40	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.547 -0.547 -0.547 -0.547 -0.547
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46 O47 H48 H49 U50	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.548 -0.548 -0.549 -0.550 -0.731 0.181 0.182	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47 Na48 H49 H50	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553 -0.553 -0.553 -0.748 0.700 0.182 0.170	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H22 C41 H42 N43 N44 N45 N46 O47 H48 H49	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.546 -0.547 -0.547 -0.547 -0.547 -0.547 0.177 0.177
C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N44 N45 N46 O47 H48 H49 H50 List	(C1) (C5) (C6) (N1) (N2) (N3) (N4) (H1)	Li -0.386 0.192 0.208 0.198 -0.208 0.203 0.203 0.208 -0.205 0.206 0.210 -0.208 0.186 -0.548 -0.548 -0.548 -0.549 -0.550 -0.731 0.181 0.182 0.484 0.555	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N44 N45 N46 O47 Na48 H49 H50 H51	(C1) (C5) (C6) (N1) (N2) (N3) (N4)	Na -0.387 0.190 0.205 0.200 -0.211 0.202 0.205 -0.205 0.201 0.210 -0.210 0.184 -0.553 -0.554 -0.553 -0.554 -0.553 -0.553 -0.748 0.700 0.182 0.179	C1* H2* H3* H4* C17 H18 H19 C20 H21 H22 C41 H42 N43 N44 N45 N46 O47 H48 H49 H50 K51	(C1) (C5) (C6) (N1) (N2) (N3) (N4) (H1)	K -0.391 0.188 0.202 0.200 -0.213 0.200 0.201 -0.207 0.197 0.206 -0.215 0.179 -0.546 -0.547 -0.546 -0.547 -0.547 -0.547 -0.746 0.177 0.177 0.177

M-DO	CM-1a							
		Li			Na			K
C1*	(C1)	-0.391	C1*	(C1)	-0.389	C1*	(C1)	-0.392
H2*		0.193	H2*		0.191	H2*		0.189
H3*		0.212	H3*		0.208	H3*		0.203
H4*		0.206	H4*		0.203	H4*		0.201
C17	(C5)	-0.208	C17	(C5)	-0.210	C17	(C5)	-0.213
H18		0.204	H18		0.202	H18		0.201
H19		0.211	H19		0.207	H19		0.202
C20	(C6)	-0.204	C20	(C6)	-0.205	C20	(C6)	-0.207
H21		0.208	H21		0.202	H21		0.199
H22		0.215	H22		0.212	H22		0.207
C41	(C13)	-0.360	C41	(C13)	-0.361	C41	(C13)	-0.364
N42	(N1)	-0.555	N42	(N1)	-0.556	N42	(N1)	-0.549
N43	(N2)	-0.563	N43	(N2)	-0.558	N43	(N2)	-0.549
N44	(N3)	-0.558	N44	(N3)	-0.556	N44	(N3)	-0.549
N45	(N4)	-0.564	N45	(N4)	-0.558	N45	(N4)	-0.549
H46		0.222	Na46		0.587	H46		0.224
H47		0.223	H47		0.226	H47		0.224
Cl48	(Cl1)	0.025	H48		0.226	Cl48	(Cl1)	0.000
C149	(Cl2)	0.023	Cl49	(Cl1)	0.025	Cl49	(Cl2)	0.001
Li50		0.517	C150	(Cl2)	0.031	K50		0.747

Table S10: Computed B3LYP charge densities (natural charges, e) on selected centres of the lowest **M-L-2a** minimum energy structures.

M-H ₂	2 0-2 a				
		Li	Na	K	
C1*	(C1)	-0.354	-0.353	-0.358	
H2*		0.184	0.180	0.179	
H3*		0.192	0.193	0.190	
H4*		0.190	0.191	0.189	
C17	(C5)	-0.180	-0.182	-0.184	
H18		0.191	0.190	0.188	
H19		0.195	0.193	0.188	
C20	(C6)	-0.178	-0.177	-0.179	
H21		0.194	0.189	0.185	
H22		0.199	0.198	0.193	
N41	(N1)	-0.560	-0.565	-0.558	
N42	(N2)	-0.560	-0.565	-0.558	
N43	(N3)	-0.560	-0.565	-0.558	
N44	(N4)	-0.560	-0.565	-0.558	

045		-0.894	-0.915	-0.917				
M46		0.604	0.715	0.826				
H47	(H1)	0.493	0.487	0.477				
H48		0.493	0.487	0.477				
M-TH	IF-2a							
		Li	Na	K				
C1*	(C1)	-0.348	-0.351	-0.356				
H2*		0.181	0.179	0.178				
H3*		0.196	0.195	0.190				
H4*		0.189	0.190	0.189				
C17	(C5)	-0.178	-0.180	-0.183				
H18		0.191	0.190	0.188				
H19		0.195	0.192	0.188				
C20	(C6)	-0.177	-0.176	-0.178				
H21		0.193	0.189	0.185				
H22		0.198	0.198	0.194				
C41	(C16)	-0.007	-0.010	-0.015				
H42		0.170	0.168	0.165				
H43		0.180	0.179	0.176				
C44	(C15)	-0.403	-0.403	-0.404				
H45		0.223	0.222	0.221				
H46		0.201	0.201	0.199				
C47	(C14)	-0.403	-0.403	-0.404				
H48		0.223	0.222	0.221				
H49		0.201	0.201	0.199				
C50	(C13)	-0.007	-0.010	-0.015				
H51		0.180	0.179	0.176				
H52		0.170	0.168	0.165				
N53	(N1)	-0.565	-0.565	-0.556				
N54	(N2)	-0.555	-0.565	-0.556				
N55	(N3)	-0.565	-0.565	-0.556				
N56	(N4)	-0.555	-0.565	-0.556				
057		-0.643	-0.650	-0.642				
M58		0.599	0.691	0.805				
M-DF	EE-2a							
		Li			Na			Κ
C1*	(C1)	-0.353	C1*	(C1)	-0.352	C1*	(C1)	-0.356
H2*		0.182	H2*		0.180	H2*		0.179
H3*		0.195	H3*		0.194	H3*		0.191
H4*		0.189	H4*		0.191	H4*		0.189
C17	(C5)	-0.179	C17	(C5)	-0.180	C17	(C5)	-0.183
H18		0.191	H18		0.190	H18		0.189

H19		0.195	H19		0.193	H19		0.188
C20	(C6)	-0.175	C20	(C6)	-0.175	C20	(C6)	-0.178
H21		0.194	H21		0.189	H21		0.185
H22		0.198	H22		0.199	H22		0.194
C41	(C14)	-0.003	C41	(C14)	-0.005	C41	(C14)	-0.009
H42		0.177	H42		0.175	H42		0.169
C43	(C13)	-0.003	C43	(C13)	-0.005	C43	(C13)	-0.009
H44		0.177	H44		0.175	H44		0.169
N45	(N1)	-0.554	N45	(N1)	-0.565	N45	(N1)	-0.554
N46	(N2)	-0.568	N46	(N2)	-0.567	N46	(N2)	-0.553
N47	(N3)	-0.554	N47	(N3)	-0.565	N47	(N3)	-0.554
N48	(N4)	-0.568	N48	(N4)	-0.566	N48	(N4)	-0.553
O49		-0.636	O49		-0.646	O49		-0.620
C50	(C16)	-0.600	Na50		0.662	H50		0.169
H51		0.203	C51	(C16)	-0.592	C51	(C15)	-0.582
H52		0.199	H52		0.202	H52		0.223
H53		0.218	H53		0.195	H53		0.192
C54	(C15)	-0.600	H54		0.215	H54		0.193
H55		0.203	C55	(C15)	-0.592	H55		0.169
H56		0.199	H56		0.202	C56	(C16)	-0.582
H57		0.218	H57		0.195	H57		0.192
H58		0.175	H58		0.215	H58		0.193
H59		0.175	H59		0.176	H59		0.223
Li60		0.580	H60		0.176	K60		0.735
M-M	eOH-2a							
		Li			Na			K
C1*	(C1)	-0.349	C1*	(C1)	-0.351	C1*	(C1)	-0.357
H2*		0.181	H2*		0.179	H2*		0.178
H3*		0.195	H3*		0.193	H3*		0.190
H4*		0.192	H4*		0.192	H4*		0.189
C17	(C5)	-0.179	C17	(C5)	-0.182	C17	(C5)	-0.184
H18		0.191	H18		0.190	H18		0.188
H19		0.195	H19		0.193	H19		0.188
C20	(C6)	-0.177	C20	(C6)	-0.177	C20	(C6)	-0.179
H21		0.194	H21		0.189	H21		0.185
H22		0.199	H22		0.199	H22		0.194
C41		-0.174	C41		-0.175	C41		-0.180
H42		0.179	H42		0.175	H42		0.171
N43	(N1)	-0.563	N43	(N1)	-0.566	N43	(N1)	-0.557
N44	(N2)	-0.558	N44	(N2)	-0.565	N44	(N2)	-0.557
N45	(N3)	-0.562	N45	(N3)	-0.565	N45	(N3)	-0.558
N46	(N4)	-0.559	N46	(N4)	-0.565	N46	(N4)	-0.557

O47		-0.745	O47		-0.760	O47		-0.758
H48		0.174	Na48		0.702	H48		0.170
H49		0.173	H49		0.173	H49		0.170
H50	(H1)	0.484	H50		0.173	H50	(H1)	0.471
Li51		0.598	H51	(H1)	0.479	K51		0.814
M-DO	C M-2 a							
		Li			Na			Κ
C1*	(C1)	-0.350	C1*	(C1)	-0.353	C1*	(C1)	-0.357
H2*		0.183	H2*		0.181	H2*		0.180
H3*		0.198	H3*		0.197	H3*		0.191
H4*		0.194	H4*		0.192	H4*		0.190
C17	(C5)	-0.178	C17	(C5)	-0.181	C17	(C5)	-0.184
H18		0.192	H18		0.190	H18		0.188
H19		0.198	H19		0.194	H19		0.189
C20	(C6)	-0.177	C20	(C6)	-0.176	C20	(C6)	-0.179
H21		0.196	H21		0.190	H21		0.186
H22		0.202	H22		0.200	H22		0.195
C41	(C13)	-0.326	C41	(C13)	-0.327	C41	(C13)	-0.330
N42	(N1)	-0.574	N42	(N1)	-0.568	N42	(N1)	-0.559
N43	(N2)	-0.571	N43	(N2)	-0.570	N43	(N2)	-0.559
N44	(N3)	-0.576	N44	(N3)	-0.568	N44	(N3)	-0.560
N45	(N4)	-0.572	N45	(N4)	-0.570	N45	(N4)	-0.560
H46		0.216	Na46		0.580	H46		0.216
H47		0.212	H47		0.218	H47		0.217
Cl48	(Cl1)	0.019	H48		0.218	Cl48	(Cl1)	-0.005
Cl49	(Cl2)	0.007	Cl49	(Cl1)	0.023	Cl49	(Cl2)	-0.005
Li50		0.534	C150	(Cl2)	0.023	K50		0.744

-			
Me ₄ cyclen		[Me ₄ cyclenH] ⁺	
C1*	-0.384	C1*	-0.386
H2*	0.158	H2*	0.184
H3*	0.196	H3*	0.210
H4*	0.195	H4*	0.200
C5*	-0.388	C5*	-0.391
H6*	0.154	H6*	0.217
H7*	0.199	H7*	0.224
H8*	0.201	H8*	0.237
C17	-0.207	C17	-0.227
H18	0.199	H18	0.207
H19	0.170	H19	0.219
C20	-0.198	C20	-0.190
H21	0.167	H21	0.217
H22	0.201	H22	0.226
C23	-0.203	C23	-0.200
H24	0.191	H24	0.215
H25	0.168	H25	0.226
C26	-0.202	C26	-0.215
H27	0.170	H27	0.205
H28	0.198	H28	0.214
N41	-0.497	N41	-0.537
N42	-0.486	N45	-0.504
N43	-0.497	N42	-0.542
N44	-0.486	N43	-0.547
		H44	0.506

Table S11: Computed BP86 charge densities (natural charges, e) on selected centres of the optimised Me₄cyclen and $[Me_4cyclenH]^+$ structures.^a

^a Refer to Figure S8 for atom labeling.

Further information on computed infrared (IR) spectra

Computed harmonic IR spectra together with selected vibrational modes for the [M⁺-L], [M(Me₄cyclen)]⁺, [Me₄cyclenH]⁺, and lowest [M(Me₄cyclen)(L)]⁺ minimum energy structures, obtained using the BP86/6-311G(d,p) method, are provided in Figures S11-S14 and Tables S12-S15. The band positions in these computed IR spectra are approximations of the true band positions because of neglect of anharmonicity and approximate treatment of electron correlation in the DFT calculations. However, scaling factors for computed harmonic wavenumbers have been established for BP86 and B3LYP calculations with a basis set which is similar to the one used in this work. These are close to 1.00 (BP86, 1.0299; B3LYP, 1.0004).^{S52} Hence, the computed spectra are expected to be reasonably reliable representations of the experimental spectra.

For a given ligand (L), comparison of the spectra for $[M^+-L]$, $[M(Me_4cyclen)]^+$, and $[M(Me_4cyclen)(L)]^+$ helps identify bands in $[M(Me_4cyclen)(L)]^+$ that arise from the $[M^+-L]$, and $[M(Me_4cyclen)]^+$ units. For example, the IR spectra of both $[M(Me_4cyclen)]^+$ and **M-L-1a** $[M(Me_4cyclen)(L)]^+$ show an intense band (at ~ 2900 cm⁻¹) and a broader group of weaker bands (within the range of 2950-3075 cm⁻¹). The 2900 cm⁻¹ band corresponds to C–H stretching absorptions of both the CH₂ and CH₃ units of the Me_4cyclen ring. The broad band in the region 2950-3075 cm⁻¹ consists of several components. The component at the highest wavenumber (~ 3050 cm⁻¹) corresponds to the C–H stretching of the CH₃ unit of the Me_4cyclen ring and in the case of the **M-L-1a** structures (L = THF, DEE, DCM), this band is also associated with the C–H stretching of both the CH₂/CH₃ units in THF/DEE/DCM. Bands within the range 2975-3025 cm⁻¹ are attributed to C–H stretching of both the CH₂ and **M-L-1a** (M = Li, Na, K) and **M-DEE-1a** (M = Li, Na) structures, they also correspond to the C–H stretching vibrations of the CH₂/CH₃ units of THF/DEE.

The computed IR spectra of the lowest $[M(Me_4cyclen)]^+$ minimum energy structures in the C–H stretching region are very similar to those of the $[M(Me_4cyclen)(L)]^+$ structures, except for the presence of additional band(s) due to L in the case of **M-L-1a** structures (L = THF, DEE, MeOH). An additional band at around 2940 cm⁻¹ due to C–H stretching in THF is observed in the IR spectra of the **M-THF-1a** structures. Further, two additional weak bands due to C–H stretching in CH₂ (~ 2960 cm⁻¹) and CH₃ (~ 2970 cm⁻¹) units in DEE are observed in the IR spectra of the **M-DEE-1a** structures (M = Li, Na). On the other hand, for the **K-DEE-1a** structure, where DEE adopts a TT configuration, the C–H stretching of CH₂ (~ 2910 and 2945 cm⁻¹) and CH₃ (~ 2960 cm⁻¹) units of DEE are associated with three additional bands. In the case of the **M-MeOH-1a** structures, two additional bands due to C–H stretching of the CH_3 unit in MeOH are observed at around 2950 and 3060 cm⁻¹.

Other new bands are seen in the $[M(Me_4cyclen)(L)]^+$ spectra which are not present in the $[M^+-L]$, and $[M(Me_4cyclen)]^+$ units and these occur in the low wavenumber region below 500 cm⁻¹. For example, for $[M(Me_4cyclen)(L)]^+$ with L = THF, metal-oxygen (M–O) stretching modes are computed at 413, 219, and 176 cm⁻¹ and for L = MeOH, these modes occur at 452, 244, and 183 cm⁻¹.

Overall, for a ligand selected from $L = H_2O$, THF, and MeOH, the IR spectra of the **M**-L-1a structures in the region 500-2500 cm⁻¹ look very similar on going from Li⁺ \rightarrow Na⁺ \rightarrow K⁺. This is not the case, however, for L = DEE or DCM. For L = DEE, the wavenumber values related to the C–O–C and C–C (in C–C–O–C–C) symmetric as well as asymmetric stretching modes are different for the **M**-DEE-1a (M = Li, Na) and **K**-DEE-1a structures (Table S14). These correspond to bands in the region 800-1100 cm⁻¹. This arises because of the GG and TT conformations of DEE in the **M**-DEE-1a (M = Li, Na) and **K**-DEE-1a structures, respectively.

For L = DCM, the differences in the **M-DCM-1a** (M = Li, Na, K) structures give rise to differences in their IR spectra. The Cl1–C–Cl2 symmetric and asymmetric stretching modes are computed at 640 and 709 cm⁻¹ for **Li-DCM-1a** and 672 and 683 cm⁻¹ for **Na-DCM-1a**, respectively. These differences arise because **Li-DCM-1a** and **Na-DCM-1a** have different structures, as well as different metal cations. As described earlier, in **Li-DCM-1a**, the Li⁺ is attached to the DCM in a η^1 -Cl1 mode [with M–Cl bond lengths which are significantly different M–Cl1 = 2.784 Å, M–Cl2 = 4.344 Å; see Table 2]. In contrast, Na⁺ coordinates to DCM in a η^2 -Cl1,Cl2 fashion in **Na-DCM-1a** with unequal bond distances [M–Cl1 (3.188 Å) and M–Cl2 (3.369 Å)]. **K-DCM-1a** has a similar η^2 -Cl1,Cl2 structure with almost equal M–Cl bond distances [M–Cl1 (3.623 Å) and M–Cl2 (3.626 Å)] and symmetric and asymmetric Cl–C– Cl stretching modes computed at 674 cm⁻¹ and 678 cm⁻¹, respectively. These spectra should be valuable to help confirm the presence and establish the structure of the [M(Me₄cyclen)(L)]⁺ complex ions when they are made experimentally.

Figure S11: IR spectra of the [M⁺-L] structures, obtained using the BP86/6-311G(d,p) method.

Figure S12: IR spectra of the $[M(Me_4cyclen)]^+$ structures, obtained using the BP86/6-311G(d,p) method.

Figure S13: IR spectra of the lowest **M-L-1a** minimum energy structures, obtained using the BP86/6-311G(d,p) method.

Figure S14: IR spectra of the Me_4 cyclen and $[Me_4$ cyclen $H]^+$ structures, obtained using the BP86/6-311G(d,p) method.

Vibrational modes	Wavenumber (cm ⁻¹)				
$[M^+-H_2O]$	Li	Na	K		
OH ₂ wagging	395	359	355		
OH ₂ rocking	521	443	388		
M–O stretching	551	311	228		
OH ₂ scissoring (bending)	1643	1640	1637		
O–H symmetrical stretching	3688	3698	3697		
O–H asymmetrical stretching	3757	3774	3777		
[M ⁺ -THF]					
THF wagging	73	53	46		
THF rocking	156	94	70		
Owagging	186	153	137		
M-O stretching	480	244	166		
C–O–C asymmetrical stretching	824, 968	834, 978	840, 985		
C–O–C symmetrical stretching	831	839	843		
C-C stretching	907	908	908		
C-C asymmetrical stretching	968	978	985		
C-C symmetrical stretching	1027	1023	1020		
CH ₂ twisting	1146-1233	1143-1230	1143-1229		
CH ₂ wagging	1281-1348	1278-1349	1277-1349		
CH ₂ scissoring (bending)	1441-1476	1440-1477	1440-1479		
CH ₂ stretching	2974-3059	2957-3055	2947-3053		
[M ⁺ -DEE]	GG	GG	TT		
DEE wagging	75	49	65		
DEE rocking	143	96	69		
O wagging	449	446	137		
M–O stretching	574, 753	251, 753	141		
C–O–C asymmetrical stretching	984	1000	908, 1046		
C–O–C symmetrical stretching	753, 964	753, 968	815, 1017		
C–C asymmetrical stretching	1067.3, 984	1064, 1000	908, 1054		
C–C symmetrical stretching	1067.1, 964	1066, 968	1017		
C-O-C rocking	1119	1119	1119		
C–O–C bending	391, 1173	1171	1171		
CH ₂ rocking	753	753	792, 1153		
CH ₂ twisting	1263-1306	1264-1304	1254-1264		
CH ₂ wagging	1331-1373	1330-1372	1332-1398		
CH ₂ scissoring (bending)	1435-1467	1434-1468	1448-1485		
CH ₂ stretching	2970-3054	2964-3048	2932-3045		
[M ⁺ -MeOH]					
MeOH rocking	203	143	112		
H wagging (attached to O)	411	398	391		
M–O stretching	557	305	226		
C–O stretching	942	963	970		

Table S12: Assignments of selected vibrational modes to the predicted IR spectra of $[M^+-L]$ structures, obtained using the BP86/6-311G(d,p) method.

O–H bending	1068	1064	1061
CH ₂ twisting	1127	1127	1127
H–O–C bending	1349	1351	1350
CH ₂ scissoring (bending)	1436-1464	1438-1466	1439-1466
CH ₂ stretching	2985-3087	2972-3072	2963-3061
O-H stretching	3708	3713	3712
[M ⁺ -DCM]			
DCM bending	96	66	59
Cl–C–Cl bending	284	297	286
M–Cl stretching	333	151	86
Cl–C–Cl symmetrical stretching	667	667	668
Cl-C-Cl asymmetrical stretching	668	671	672
CH ₂ rocking	883	879	878
CH ₂ twisting	1125	1132	1132
CH ₂ wagging	1264	1263	1259
CH ₂ scissoring (bending)	1398	1398	1399
CH ₂ symmetrical stretching	3054	3055	3057
CH ₂ asymmetrical stretching	3150	3146	3146

Table S13: Assignments of selected vibrational modes to the predicted IR spectra of $[M(Me_4cyclen)]^+$ and lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures, obtained using the BP86/6-311G(d,p) method.

Vibrational modes	Wavenumber (cm ⁻¹)			
[M(Me ₄ cyclen)] ⁺	Li	Na	K	
CH ₂ twisting	1231-1285	1232-1287	1234-1290	
CH ₂ wagging	1331-1369	1333-1381	1332-1381	
CH ₂ scissoring	1402-1467	1405-1465	1404-1465	
C-H stretching	2898-3052	2887-3045	2868-3037	
$[M(Me_4cyclen)(H_2O)]^+$				
CH ₂ twisting	1232-1286	1237-1292	1236-1295	
CH ₂ wagging	1333-1374	1333-1383	1334-1380	
CH ₂ scissoring	1401-1467	1401-1464	1402-1465	
C-H stretching	2887-3049	2874-3043	2860-3035	

Table S14: Assignments of selected vibrational modes to the predicted IR spectra of lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures, obtained using the BP86/6-311G(d,p) method.

Vibrational modes	Wavenumber (cm ⁻¹)			
$[M(Me_4cyclen)(H_2O)]^+$	Li	Na	K	
OH ₂ wagging	154	257	282	
OH ₂ rocking	268	338, 348	299	
M–O stretching	459	255	194	
OH ₂ scissoring (bending)	1606	1617	1615	
O–H symmetrical stretching	3721	3710	3702	

$[M(Me_4cyclen)(THF)]^+$ $-$ THF wagging51, 533645THF rocking787053O wagging131118113M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
$[M(Me_4cyclen)(THF)]^+$ $-$ THF wagging51, 533645THF rocking787053O wagging131118113M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
THF wagging51, 533645THF rocking787053O wagging131118113M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
THF rocking787053O wagging131118113M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
O wagging131118113M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
M-O stretching413219167C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
C-O-C bending662657655C-O-C asymmetrical stretching845, 999845, 1000847, 1003
C-O-C asymmetrical stretching 845, 999 845, 1000 847, 1003
C-O-C symmetrical stretching 824, 853, 854 821, 851 853
C-C stretching 910, 1019 908, 1018 908, 1017
C–C symmetrical stretching 1019 1018 1017
CH ₂ twisting 1141, 1216, 1225 1141, 1216, 1143, 1221
1226
CH ₂ wagging 1274, 1318, 1342 1275, 1318, 1276, 1323,
1345 1350
$CH_2 \text{ scissoring (bending)} \qquad 1441-1480 \qquad 1440-1480 \qquad 1440-1481$
CH ₂ stretching 2948-3050 2940-3049 2929-3046
[M(Ma_avalan)(DEE)]+
[M(Me4cyclell)(DEE)] O wassing (128, 420, 142, 141)
O wagging 428, 430 443 141 M. O. stratching 402 227 156
M=0 stretching 403 22/ 156
C-O-C asymmetrical stretching 8/2, 1026, 10/4 8/8, 1021 910
C-O-C symmetrical stretching 760, 804, 980 757, 809, 974 821, 1026
C-C asymmetrical stretching 872, 1026 878, 1021 910, 1062
C-C symmetrical stretching 980 974 1026, 1062
O-C-C bending 431 443 420
C-O-C rocking 763, 804, 1120 772, 809, 1021 792, 806
C-O-C bending 492 448 422
CH ₂ rocking 1122, 1270, 1298 1122, 1172 1226, 1133, 1155
CH ₂ twisting 1270, 1298 1268, 1305 1255, 1264
CH ₂ wagging 1334, 1352, 1362 1330, 1356, 1332, 1362,
1365, 1367 1398
CH ₂ scissoring (bending) 1428-1472 1430-1463 1443-1485
CH ₂ stretching 2956-3052 2954-3045 2909-3042
$[M(Me_4cyclen)(MeOH)]^+$
H wagging (attached to O) 296, 305, 340, 359, 360 368 342
M–O stretching 452 244 183
C–O stretching 992 988 987
O–H bending 1051 1056 1055
CH ₂ twisting 1128 1128 1127
H–O–C bending 1335 1342, 1343, 1343, 1344.
1344 1345
CH ₂ scissoring (bending) 1431-1466 1432-1465 1432-1465
CH ₂ stretching 2955-3071 2953-3063 2946-3054

O-H stretching	3735	3721	3715
$[M(Me_4cyclen)(DCM)]^+$			
Cl-C-Cl bending	279	285	282
M-Cl stretching	272, 360, 363	173	150
Cl1–C stretching	640	672	—
Cl2–C stretching	709	683	_
Cl-C-Cl symmetrical stretching	_	_	674
Cl-C-Cl asymmetrical stretching	_	_	678
CH ₂ rocking	874	879	876
CH ₂ twisting	1137	1135	1135
CH ₂ wagging	1253, 1256	1258, 1260	1257
CH ₂ scissoring (bending)	1402, 1403	1402, 1404	1401, 1401
CH ₂ symmetrical stretching	3050	3050	3056
CH ₂ asymmetrical stretching	3135	3136	3141

Table S15: Assignments of selected vibrational modes to the predicted IR spectra of Me_4 cyclen and $[Me_4$ cyclenH]⁺ structures, obtained using the BP86/6-311G(d,p) method.

Vibrational	Me ₄ cyclen	[Me ₄ cyclenH] ⁺	
modes	Wavenumber (cm ⁻¹)		
CH ₂ twisting	1102-1295	1102-1296	
CH ₂ wagging	1332-1370	1328-1373	
CH ₂ scissoring	1398-1463	1390-1480	
C–H stretching	2758-3032	2847-3097	
N-H wagging	-	1480, 1473	
N–H bending	—	1573	
N-H stretching	_	2260	

	B3LYP/	/6-311G(d,p)	DF-LCCSD(T)/nZ //B3LYP/6-311G(d,p)		DF-LCCSD(T)-F12x ^a /nZ-F12x //B3LYP/6-311G(d,p)				
		A TT7PE+BSSE	D		n =	n = D		n = T	
		$\Delta E^{EEEEBSSE}$	n = D	n = 1	$\mathbf{x} = \mathbf{a}$	x = b	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	
Li-H ₂ O-2a	71.9	47.0	55.9	59.6	59.6	59.9	60.5	60.7	
Li-THF-2a	63.9	50.0	77.0	75.4	77.5	78.1	77.9	78.1	
Li-DEE-2a	39.1	25.7	71.0	59.0	61.6	62.2	62.8	63.0	
Li-MeOH-2a	66.3	47.7	63.4	64.1	65.3	65.7	66.3	66.4	
Li-DCM-2a	16.0	10.1	36.5	32.8	36.5	36.7	34.4	34.5	
Na-H ₂ O-2a	73.9	51.4	50.9	57.2	55.4	55.6	57.2	57.3	
Na-THF-2a	72.6	60.2	66.8	68.6	71.6	71.8	70.5	70.6	
Na-DEE-2a	53.8	41.9	51.8	55.9	57.8	58.2	60.4	60.5	
Na-MeOH-2a	70.1	53.7	57.0	60.8	60.3	60.5	61.5	61.6	
Na-DCM-2a	26.2	20.0	39.7	40.9	42.1	42.4	42.1	42.3	
K-H ₂ O-2a	59.4	43.2	41.9	40.2	45.3	45.4	42.4	42.5	
K-THF-2a	58.7	49.7	53.6	47.5	53.9	53.9	50.7	50.8	
K-DEE-2a	47.3	38.3	55.4	49.5	54.5	54.5	53.6	53.6	
K-MeOH-2a	55.9	43.9	45.3	42.3	48.6	48.6	45.2	45.3	
K-DCM-2a	23.8	19.6	33.8	29.8	35.2	35.3	33.1	33.2	

Table S16: Calculated bond dissociation energies (kJ.mol⁻¹) of the lowest **M-L-2a** minimum energy structures.

^a The 3*A ansatz with the (Fix,NoX) option was used; the MOLPRO default option is (Loc,Fix).

Discussion of ansatz options for the DF-LCCSD(T)-F12x calculations

The DF-LCCSD(T)-F12x calculations, the results of which are summarised in Tables 2 and S16, were carried out using the 3*A(Fix,NoX) ansatz in MOLPRO whereas the default ansatz in this code is 3*A(Loc,Fix). Attempts to calculate BDEs using the DF-LCCSD(T)-F12x method and double-ζ quality basis sets in conjunction with the MOLPRO default ansatz option (Loc,Fix) resulted in BDE values for the M-DCM-1a (M-DCM-2a) structures which are not comparable to the DF-LCCSD(T) values (see Table S17). Further, the BDE values of M-DCM-1a (M-DCM-2a) (M = Li, K) are negative with the default ansatz option but are positive with the 3*A(Fix,NoX) ansatz. Correlating the $(n-1)s^2$ and $(n-1)p^6$ core electrons of the Cl atoms and using the (Loc,Fix) ansatz option results in even more negative BDE values as is observed for the loss of DCM from Li-DCM-1a (Li-DCM-2a) (see Table S17). The DF-LCCSD(T)-F12x/DZ-F12 BDEs obtained using the default 3*A(Loc,Fix) ansatz for the loss of O-donor ligands from the M-L-1a (M-L-2a) structures (M = Li, Na, and L = H_2O , THF, DEE, MeOH) are comparable to those obtained using the 3*A(Fix,NoX) ansatz, with the latter being slightly higher than the former. The maximum difference in BDEs calculated with the two ansatz options for O-containing M-L-1a (M-L-2a) structures is 3.5 kJ.mol⁻¹ (see Table S17 and Figure S15). This trend is also expected for the K-L-1a (K-L-2a) complexes with O-donor ligands although no calculations have been carried out for these ions using the default 3*A(Loc,Fix) ansatz. It appears that the default (Loc,Fix) ansatz option yields reasonable BDEs for all $[M(Me_4cyclen)(L)]^+$ complexes, for M = Li, Na, and K, except for L = DCM, and the problem is associated with the way Cl atoms are treated with this ansatz option. The 3*A(Fix,NoX) ansatz does not suffer from this problem. The (Fix,NoX) option is therefore recommended, although it needs to be tested on a wider set of molecules composed of other elements than those involved in this work.

Discussion of basis set effects on the DF-LCCSD(T) and DF-LCCSD(T)-F12x calculations

The (Fix,NoX) ansatz option was employed in all the DF-LCCSD(T)-F12x/nZ-F12x calculations (x = a, b and n = D, T) for the purposes of investigating basis set effects. The dependence of the calculated BDEs on the methods and basis sets used in this work are depicted in Figures S16 and S17 (with relevant BDE values provided in Tables 2 and S16).

Firstly, the geometry effects on the BDE values obtained from the two functionals used are relatively small (within 4.0 kJ.mol⁻¹), except for Li-THF-1a (Li-THF-2a) and Na-DEE-1a (Na-DEE-2a) at the DF-LCCSD(T)/DZ and DF-LCCSD(T)-F12/TZ-F12x levels, respectively, where the energy differences are 5.4 kJ.mol⁻¹ [DF-LCCSD(T)/DZ//B3LYP/6-311G(d,p) – DF-LCCSD(T)/DZ//BP86/6-311G(d,p)] and 4.7 kJ.mol⁻¹ [DF-LCCSD(T)-F12/TZ-F12x//B3LYP/6-311G(d,p) – DF-LCCSD(T)-F12/TZ-F12x//BP86/6-311G(d,p)]. Secondly, the DF-LCCSD(T)-F12a and DF-LCCSD(T)-F12b methods used with the nZ-F12x basis sets (n = D or T) provide comparable BDE values, with the DF-LCCSD(T)-F12b values being only slightly higher than the DF-LCCSD(T)-F12a values (maximum difference of 0.6 and 0.2 kJ.mol⁻¹ with the DZ-F12x and TZ-F12x basis sets, respectively). Thirdly, the basis set effects on going from (i) DF-LCCSD(T)/DZ \rightarrow DF-LCCSD(T)/TZ, (ii) DF-LCCSD(T)/TZ \rightarrow DF-LCCSD(T)-F12a/DZ-F12a, (iii) DF-LCCSD(T)/TZ \rightarrow DF-LCCSD(T)-F12b/DZ-F12b, (iv) DF-LCCSD(T)-F12a/DZ-F12a \rightarrow DF-LCCSD(T)-F12a/TZ-F12a, and (v) DF-LCCSD(T)-F12b/DZ- $F12b \rightarrow DF$ -LCCSD(T)-F12b/TZ-F12b have been analysed and these are depicted in Figures S18 and S19. The basis set effects appear to be much larger with the DF-LCCSD(T) method (DZ \rightarrow TZ) than with the DF-LCCSD(T)-F12x methods (DZ-F12x \rightarrow TZ-F12x). The DZ-F12x and TZ-F12x values (DF-LCCSD(T)-F12x methods) are close to each other with a maximum difference of 3.4 kJ.mol⁻¹, while the difference between the DZ and TZ values (DF-LCCSD(T) method) is as large as 12.0 kJ.mol⁻¹ for Li-DEE-2a. Therefore, it can be concluded that (i) using the DF-LCCSD(T)-F12x methods with a DZ-F12x quality basis set is sufficient, (ii) the DF-LCCSD(T)-F12x methods are preferred to the DF-LCCSD(T) method for relatively large molecular systems, and (iii) the DF-LCCSD(T) method with a DZ basis set is inadequate. Also, it is significant that a consistent trend in basis set convergence (for example, in the direction of changes in BDEs as the size of the basis set increases) is not observed since the basis set effects are case (or molecule) dependent. Further investigations on basis set effects with the DF-LCCSD(T) and DF-LCCSD(T)-F12x methods are needed on other molecular systems to establish if this result is general. More specifically, comparing the DF-LCCSD(T)-F12x and DF-LCCSD(T) methods, then if the density-fitting (DF) and local (L) approximations
are ignored, DF-LCCSD(T)-F12x should be the higher level of theory as the F12 method is explicitly correlated. It is also known that DF-LCCSD(T)-F12x/DZ-F12 computed values are expected to be as good as DF-LCCSD(T)/AVQZ results and a trend of BDE values of DF-LCCSD(T)/DZ \rightarrow DF-LCCSD(T)/TZ \rightarrow DF-LCCSD(T)-F12x/DZ-F12 (~ DF-LCCSD(T)/AVQZ) is anticipated. Inspection of the BDE values in Table 2 (columns 4-7) and Figures S16 and S18 shows that this trend is reasonably well observed in all the M = Li and Na cases, apart from Li-DEE-1a and Na-H₂O-1a, and in the M = K cases, apart from K-THF-1a, K-DEE-1a, and K-DCM-1a, although in all cases where a smooth trend is not observed the deviations are small (roughly within the commonly accepted chemical uncertainty for relative energies of 4.2 kJ.mol⁻¹).

The main conclusions of this section are, therefore:

- (i) The geometry effects on the BDEs from the two functionals used are negligibly small.
- (ii) In DF-LCCSD(T)-F12x calculations with MOLPRO, the (Fix,NoX) ansatz option is necessary, as the default (Loc,Fix) option gives rise to errors in relative energies for chlorine-containing molecules.
- (iii) Calculations with the DF-LCCSD(T) method with a DZ basis set are inadequate, but DF-LCCSD(T)-F12x calculations with a DZ-F12 basis set are expected to be reliable and give accurate relative energies. This latter method is recommended for calculations of BDEs for the type of complexes considered in this work.

Summarising, for lower level geometry optimisation calculations, some commonly used functionals, such as BP86 or B3LYP, used in the present study, appear to be adequate, while for improved relative electronic energies, the DF-LCCSD(T)-F12x methods with basis sets of at least DZ-F12 quality are required, though it should be noted that the (Fix,NoX) ansatz option should be employed in the DF-LCCSD(T)-F12x calculations instead of the default (Loc,Fix) option.

Table S17: Comparison between the DF-LCCSD(T)-F12x/DZ-F12//BP86/6-311G(d,p) and DF-LCCSD(T)-F12x/DZ-F12//B3LYP/6-311G(d,p) bond dissociation energies (kJ.mol⁻¹) obtained using two different ansatz options for the lowest minimum energy $[M(Me_4cyclen)(L)]^+$ for the *O*-containing ligands.

	DF-LCCSD(T)-F12a/DZ-F12a //BP86/6-311G(d,p)		Differences	DF-LCCSD(T)-F12b/DZ-F12b //BP86/6-311G(d,p)		Differences
Ansatz options	Fix,NoX	Loc,Fix		Fix,NoX	Loc,Fix	
Li-H ₂ O-1a	59.3	55.8	+3.5	59.5	56.0	+3.5
Li-THF-1a	76.8	73.7	+3.1	77.3	74.2	+3.1
Li-DEE-1a	59.7	56.8	+2.9	60.2	57.4	+2.8
Li-MeOH-1a	64.8	62.1	+2.7	65.1	62.4	+2.7
Li-DCM-1a	33.6	-8.7 (-93.6 ^a)	_	33.9	-8.4 (-93.3 ^a)	_
Na-H ₂ O-1a	55.5	52.9	+2.6	55.7	53.1	+2.6
Na-THF-1a	70.6	68.5	+2.1	70.8	68.8	+2.0
Na-DEE-1a	56.4	54.6	+1.8	56.7	54.9	+1.8
Na-MeOH-1a	60.0	58.2	+1.8	60.1	58.3	+1.8
Na-DCM-1a	40.2	15.7	_	40.5	16.0	_
K-DCM-1a	31.5	-6.3	_	31.5	-6.3	_
-	DF-LCCSD(T)-F12a/DZ-F12a //B3LYP/6-311G(d,p)					
	DF-LCCSD(//B3LYP	T)-F12a/DZ-F12a 2/6-311G(d,p)	Differences	DF-LCCSD(//B3LYF	T)-F12b/DZ-F12b 2/6-311G(d,p)	Differences
Ansatz options	DF-LCCSD(//B3LYP Fix,NoX	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix	Differences	DF-LCCSD(//B3LYF Fix,NoX	T)-F12b/DZ-F12b 2/6-311G(d,p) Loc,Fix	Differences
Ansatz options	Fix,NoX 59.6	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2	Differences +3.4	DF-LCCSD(//B3LYF Fix,NoX 59.9	T)-F12b/DZ-F12b 2/6-311G(d,p) Loc,Fix 56.4	Differences +3.5
Ansatz options Li-H ₂ O-2a Li-THF-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4	Differences +3.4 +3.1	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1	T)-F12b/DZ-F12b P/6-311G(d,p) Loc,Fix 56.4 75.0	Differences +3.5 +3.1
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8	Differences +3.4 +3.1 +2.8	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2	T)-F12b/DZ-F12b 2/6-311G(d,p) Loc,Fix 56.4 75.0 59.4	Differences +3.5 +3.1 +2.8
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5	Differences +3.4 +3.1 +2.8 +2.8	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7	T)-F12b/DZ-F12b D/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9	Differences +3.5 +3.1 +2.8 +2.8
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a)	Differences +3.4 +3.1 +2.8 +2.8 -	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7	T)-F12b/DZ-F12b D/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a)	Differences +3.5 +3.1 +2.8 +2.8 -
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a)	Differences +3.4 +3.1 +2.8 +2.8 -	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7	T)-F12b/DZ-F12b P/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 52.0	Differences +3.5 +3.1 +2.8 +2.8 -
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a Na-H ₂ O-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5 55.4	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a) 52.9	Differences +3.4 +3.1 +2.8 +2.8 - +2.5 +2.5	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7 55.6 71.9	T)-F12b/DZ-F12b D/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 53.0	Differences +3.5 +3.1 +2.8 +2.8 - +2.6
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a Na-H ₂ O-2a Na-HF-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5 55.4 71.6	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a) 52.9 69.5	Differences +3.4 +3.1 +2.8 +2.8 - +2.5 +2.5 +2.1	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7 55.6 71.8	T)-F12b/DZ-F12b P/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 53.0 69.8 56.2	Differences +3.5 +3.1 +2.8 +2.8 - +2.6 +2.0
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a Na-H ₂ O-2a Na-H ₂ O-2a Na-THF-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5 55.4 71.6 57.8	T)-F12a/DZ-F12a 26-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a) 52.9 69.5 56.0	Differences +3.4 +3.1 +2.8 +2.8 - +2.5 +2.1 +1.8	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7 55.6 71.8 58.2	T)-F12b/DZ-F12b D/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 53.0 69.8 56.3	Differences +3.5 +3.1 +2.8 +2.8 - +2.6 +2.0 +1.9
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a Na-H ₂ O-2a Na-H ₂ O-2a Na-THF-2a Na-DEE-2a Na-MeOH-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5 55.4 71.6 57.8 60.3	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a) 52.9 69.5 56.0 58.5	Differences +3.4 +3.1 +2.8 +2.8 - +2.5 +2.1 +1.8 +1.8	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7 55.6 71.8 58.2 60.5	T)-F12b/DZ-F12b P/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 53.0 69.8 56.3 58.6	Differences +3.5 +3.1 +2.8 +2.8 - +2.6 +2.0 +1.9 +1.9
Ansatz options Li-H ₂ O-2a Li-THF-2a Li-DEE-2a Li-MeOH-2a Li-DCM-2a Na-H ₂ O-2a Na-THF-2a Na-DEE-2a Na-DEE-2a Na-MeOH-2a Na-DCM-2a	DF-LCCSD(//B3LYP Fix,NoX 59.6 77.5 61.6 65.3 36.5 55.4 71.6 57.8 60.3 42.1	T)-F12a/DZ-F12a 2/6-311G(d,p) Loc,Fix 56.2 74.4 58.8 62.5 -4.7 (-86.2 ^a) 52.9 69.5 56.0 58.5 14.6	Differences +3.4 +3.1 +2.8 +2.8 - +2.5 +2.1 +1.8 +1.8 -	DF-LCCSD(//B3LYF Fix,NoX 59.9 78.1 62.2 65.7 36.7 55.6 71.8 58.2 60.5 42.4	T)-F12b/DZ-F12b P/6-311G(d,p) Loc,Fix 56.4 75.0 59.4 62.9 -4.5 (-86.0 ^a) 53.0 69.8 56.3 58.6 14.9	Differences +3.5 +3.1 +2.8 +2.8 - +2.6 +2.0 +1.9 +1.9 -

^a The (n-1)s² and (n-1)p⁶ core electrons of Cl atom were correlated.

Figure S15: The bond dissociation energy differences between the two ansatz options [Δ BDE (in kJ.mol⁻¹) = E(Fix,NoX) – E(Loc,Fix)], obtained using the DF-LCCSD(T)-F12x/DZ-F12x//BP86/6-311G(d,p) and DF-LCCSD(T)-F12x/DZ-F12x//B3LYP/6-311G(d,p) methods (x = a or b) for the lowest minimum energy structures **M-L-1a** and **M-L-2a**, respectively, for the *O*-containing ligands.

Figure S16: The bond dissociation energies $(kJ.mol^{-1})$ of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures calculated using the DF-LCCSD(T)/nZ//BP86/6-311G(d,p) and DF-LCCSD(T)-F12x/nZ-F12x//BP86/6-311G(d,p) methods (n = D or T and x = a or b). In the DF-LCCSD(T)-F12x calculations, the (Fix,NoX) ansatz option was used.

Figure S17: The bond dissociation energies (kJ.mol⁻¹) of the lowest $[M(Me_4cyclen)(L)]^+$ minimum energy structures calculated using the DF-LCCSD(T)/nZ//B3LYP/6-311G(d,p) and DF-LCCSD(T)-F12x/nZ-F12x//B3LYP/6-311G(d,p) methods (n = D or T and x = a or b). In the DF-LCCSD(T)-F12x calculations, the (Fix,NoX) ansatz option was used.

Figure S18: The bond dissociation energy differences (Δ BDE in kJ.mol⁻¹) between different methods and basis sets used in this work for the lowest [M(Me₄cyclen)(L)]⁺ minimum energy structures **M-L-1a**. In the DF-LCCSD(T)-F12x calculations, the (Fix,NoX) ansatz option was used. In this Figure, E(DZ), E(TZ), E(DZ-F12x), and E(TZ-F12x) stand for DF-LCCSD(T)/DZ, DF-LCCSD(T)/TZ, DF-LCCSD(T)-F12x/DZ-F12x, and DF-LCCSD(T)-F12x/TZ-F12x (x = a or b), respectively.

Figure S19: The bond dissociation energy differences (Δ BDE in kJ.mol⁻¹) between different methods and basis sets used in this work for the lowest [M(Me₄cyclen)(L)]⁺ minimum energy structures **M-L-2a**. In the DF-LCCSD(T)-F12x calculations, the (Fix,NoX) ansatz option was used.

(a) $[K\{(2-hydroxyethyl)_4cyclen)\}]^+, (C_4 symmetry)$

(Combination of K⁺ and cyclen derivative **1c**; Scheme 1)

(Combination of K⁺ and cyclen derivative 1d; Scheme 1)

Figure S20: Optimised K⁺ complexes of cyclen derivatives 1c (a) and 1d (b) obtained using the BP86/6-311G(d,p) method. The symmetry of each structure is provided. Selected H atoms are omitted for clarity.

(a) K ⁺ complexes of cyclen derivative 1 c									
	Bond distances (Å)								
	K–N1	K–N2	K–N3	K–N4	KO1	KO2	K-O3	K04	
BP86		2.9	931			2.8	320		
B3LYP		2.9	937			2.7	796		
Experiment ^a	2.832	2.903	2.909	2.869	2.790	2.759	2.806	2.803	
_			Bo	ond angles (°)				
	N1-K-N4	N1-K-N2	N2-K-N3	N3-K-N4	01-K-04	01-K-02	O2-K-O3	O3-K-O4	
BP86		65	5.0			81	.8		
B3LYP		64	1.9		81.9				
Experiment ^b	66.0	64.8	64.2	64.4	85.8	73.9	91.7	73.2	
		(b) K ⁺ compl	exes of cycle	en derivative	1d			
			Bon	d distances (Å)				
	K–N1	K–N2	K–N3	K–N4	K-01	K02	K-03	K04	
BP86	3.016	3.017	3.016	3.017	2.835	2.840	2.835	2.840	
B3LYP	3.014	3.019	3.014	3.019	2.810	2.809	2.810	2.809	
Experiment ^a	2.943(3)	2.986(2)	3.031(2)	2.964(2)	2.778(2)	2.803(2)	2.715(2)	2.776(2)	
			Bo	ond angles (°)				
	N1-K-N4	N1-K-N2	N2-K-N3	N3-K-N4	01-K-04	01-K-02	O2-K-O3	O3–K–O4	
BP86	62.5	63.1	62.5	63.1	65.6	87.5	65.6	87.5	
B3LYP	62.4	63.2	62.4	63.2	62.6	90.6	62.6	90.6	
Experiment ^b	63.50(6)	63.10(6)	61.92(6)	62.10(6)	68.83(6)	83.83(6)	71.99(6)	85.84(6)	

Table S18: Selected bond distances and bond angles of the K^+ complexes of cyclen derivatives **1c** (a) and **1d** (b), obtained using the BP86/6-311G(d,p) and B3LYP/6-311G(d,p) methods.

^{a,b} Correspond to the reported crystal structures $[K{(2-hydroxyethyl)_4cyclen)}]^{+S34a}$ and $[K{(4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide-CH_2)_4cyclen}]^+, S34b$ respectively.

Figure S21: BP86/6-311G(d,p) optimised geometry of the [K(Me₄cyclen)][HBPh₃] complex. The experimental structure was obtained by Okuda et al.^{S53}

	Experimenta	Theory			
	Experiment	BP86/6-311G(d,p)	B3LYP/6-311G(d,p)		
Bond distances (Å)					
K1-N1	2.837(7)	2.927	2.939		
K1-N2	2.858(7)	2.919	2.915		
K1–N3	2.791(7)	2.881	2.886		
K1-N4	2.826(6)	2.952	2.959		
B1-C13	1.642(11)	1.644	1.646		
B1-C19	1.644(12)	1.640	1.642		
B1-C25	1.636(11)	1.634	1.632		
K1…H1	2.73(7)	2.616	2.595		
K1…C13	3.148(8)	3.152	3.203		
K1…C14	3.122(8)	3.202	3.211		
K1…C19	3.280(7)	3.201	3.209		
K1…C20	3.190(8)	3.290	3.324		
Bond angles (°)					
N1-K1-N2	63.2(2)	64.6	64.4		
N2-K1-N3	65.4(2)	65.0	65.1		
N3-K1-N4	65.3(2)	64.8	64.6		
N4-K1-N1	65.3(2)	63.8	63.6		
Torsion (°)					
N1-C1-C2-N2	62(2)	65.2	64.9		
N2-C3-C4-N3	64(2)	64.7	64.7		
N3-C5-C6-N4	62(2)	65.2	65.1		
N4-C7-C8-N1	68(2)	63.6	63.7		
B1-C13-C14-C15	-178.7(7)	-177.4	-176.7		
B1-C13-C18-C17	179.5(7)	177.4	176.8		
B1-C19-C20-C21	-179.9(6)	176.3	176.0		
B1-C19-C24-C23	179.8(6)	-176.7	-176.1		

Table S19: Selected geometrical parameters of the [K(Me₄cyclen)][HBPh₃] complex.

^a Correspond to the reported crystal structures [K(Me₄cyclen)][HBPh₃]^{S53}

Table S20: Cartesian coordinates (in Å) and total electronic energies (in Hartree) of all stationary point obtained using the BP86/6-311G(d,p) method.

Species	Total Electronic		Aton	n Coordinates	
	Energy (Hartree)	G	0.0400040		
1. Li-H ₂ O-1a	-777.1542899	С	-0.3403010	3.1963370	0.8567770
		Н	-0.3805460	4.1841390	0.3526490
		Η	0.4140700	3.2492970	1.6561840
		Η	-1.3195770	3.0136560	1.3233790
		С	-3.1833730	-0.3342590	0.8634910
		Η	-4.1745240	-0.3792610	0.3664510
		Η	-3.2269860	0.4218020	1.6608160
		Н	-2.9928470	-1.3075320	1.3383220
		С	0.3403010	-3.1963370	0.8567770
		Η	-0.4140700	-3.2492970	1.6561840
		Н	1.3195770	-3.0136560	1.3233790
		Н	0.3805460	-4.1841390	0.3526490
		С	3.1833730	0.3342590	0.8634910
		Η	4.1745240	0.3792610	0.3664510
		Η	3.2269860	-0.4218020	1.6608160
		Н	2.9928470	1.3075320	1.3383220
		С	-1.0195440	1.9952650	-1.1480440
		Н	-0.5934620	1.3942180	-1.9677480
		Н	-1.2496840	2.9923380	-1.5813990
		С	-2.3209850	1.3500180	-0.6583100
		Н	-3.0534980	1.3257110	-1.4922960
		Н	-2.7735540	1.9774670	0.1253450
		С	-1.9964360	-1.0247470	-1.1461320
		Н	-1.3986150	-0.6056940	-1.9720870
		Н	-2.9950070	-1.2589330	-1.5741180
		С	-1.3521130	-2.3237590	-0.6486160
		Н	-1.3300790	-3.0622050	-1.4771190
		Н	-1.9791580	-2.7685200	0.1398740
		С	1.0195440	-1.9952650	-1.1480440
		Н	0.5934620	-1.3942180	-1.9677480
		Н	1.2496840	-2.9923380	-1.5813990
		С	2.3209850	-1.3500180	-0.6583100
		Н	3.0534980	-1.3257110	-1.4922960
		Н	2.7735540	-1.9774670	0.1253450
		Ċ	1.9964360	1.0247470	-1.1461320
		Η	1.3986150	0.6056940	-1.9720870
		Н	2.9950070	1.2589330	-1.5741180
		C	1 3521130	2 3237590	-0 6486160
		н	1 3300790	3 0622050	-1 4771190
		Н	1.9791580	2.7685200	0.1398740

	Ν	0.0000000	2.1014710	-0.0754660
	Ν	-2.0972860	0.0010340	-0.0808300
	Ν	0.0000000	-2.1014710	-0.0754660
	Ν	2.0972860	-0.0010340	-0.0808300
	Ο	0.0000000	0.0000000	2.7547600
	Li	0.0000000	0.0000000	0.7459920
	Н	-0.1570310	0.7563670	3.3427980
	Н	0.1570310	-0.7563670	3.3427980
-933.208942	С	3.1709350	0.0186620	0.0980580
	Η	4.1658500	-0.0693500	-0.3860160
	Η	3.1094650	-0.7187890	0.9115500
	Н	3.0979610	1.0204130	0.5452810
	С	0.0000000	3.3154660	-0.0180320
	Н	0.0556450	4.2662890	-0.5884330
	Н	0.7575920	3.3450180	0.7784040
	Η	-0.9884150	3.2600120	0.4601160
	С	-3.1709350	-0.0186620	0.0980580
	Η	-3.1094650	0.7187890	0.9115500
	Η	-3.0979610	-1.0204130	0.5452810
	Η	-4.1658500	0.0693500	-0.3860160
	С	0.0000000	-3.3154660	-0.0180320
	Η	-0.0556450	-4.2662890	-0.5884330
	Η	-0.7575920	-3.3450180	0.7784040
	Н	0.9884150	-3.2600120	0.4601160
	С	2.0892550	0.8199660	-1.9286400
	Η	1.4616560	0.4602560	-2.7598920
	Η	3.1134360	0.9370940	-2.3446020
	С	1.5896660	2.1899280	-1.4562840
	Η	1.6495120	2.9072650	-2.3024720
	Η	2.2642170	2.5809290	-0.6784350
	С	-0.8038100	2.0762610	-1.9434470
	Η	-0.4382210	1.4110950	-2.7423850
	Η	-0.9477620	3.0731480	-2.4135940
	С	-2.1536560	1.5687140	-1.4260260
	Η	-2.9033120	1.6214850	-2.2434030
	Η	-2.5195510	2.2387270	-0.6324730
	С	-2.0892550	-0.8199660	-1.9286400
	Н	-1.4616560	-0.4602560	-2.7598920
	Η	-3.1134360	-0.9370940	-2.3446020
	С	-1.5896660	-2.1899280	-1.4562840
	Н	-1.6495120	-2.9072650	-2.3024720
	Н	-2.2642170	-2.5809290	-0.6784350
	С	0.8038100	-2.0762610	-1.9434470
	Н	0.4382210	-1.4110950	-2.7423850
	Н	0.9477620	-3.0731480	-2.4135940

2. Li-THF-1a

		С	2.1536560	-1.5687140	-1.4260260
		Н	2.9033120	-1.6214850	-2.2434030
		Η	2.5195510	-2.2387270	-0.6324730
		С	-0.5324440	-1.0676830	2.9078050
		Η	0.1543610	-1.9307980	2.8593260
		Η	-1.5131900	-1.3656230	2.5071280
		С	-0.5991970	-0.4833100	4.3198000
		Н	-0.5305110	-1.2588750	5.0959170
		Н	-1.5411890	0.0689550	4.4691340
		С	0.5991970	0.4833100	4.3198000
		Н	0.5305110	1.2588750	5.0959170
		Н	1.5411890	-0.0689550	4.4691340
		С	0.5324440	1.0676830	2.9078050
		Н	1.5131900	1.3656230	2.5071280
		Н	-0.1543610	1.9307980	2.8593260
		Ν	2.0629500	-0.2020250	-0.8543430
		Ν	0.2253840	2.1347990	-0.8773420
		Ν	-2.0629500	0.2020250	-0.8543430
		Ν	-0.2253840	-2.1347990	-0.8773420
		0	0.0000000	0.0000000	2.0562360
		Li	0.0000000	0.0000000	0.0281860
3. Li-DEE-1a	-934.4135544	С	0.0000000	-3.3104130	0.0050150
		Н	-0.0991140	-4.2634720	-0.5553850
		Н	-0.7366970	-3.3081990	0.8217440
		Н	1.0028890	-3.2847200	0.4551440
		С	3.2079700	0.0321020	0.0808650
		Η	4.1870080	-0.0020910	-0.4407230
		Η	3.2101720	-0.7307500	0.8727800
		Η	3.1080110	1.0140420	0.5648260
		С	0.0000000	3.3104130	0.0050150
		Η	0.7366970	3.3081990	0.8217440
		Η	-1.0028890	3.2847200	0.4551440
		Η	0.0991140	4.2634720	-0.5553850
		С	-3.2079700	-0.0321020	0.0808650
		Н	-4.1870080	0.0020910	-0.4407230
		Н	-3.2101720	0.7307500	0.8727800
		Η	-3.1080110	-1.0140420	0.5648260
		С	0.8198460	-2.0876190	-1.9248570
		Η	0.4556730	-1.4335630	-2.7332290
		Η	0.9642270	-3.0902130	-2.3821180
		С	2.1699750	-1.5738170	-1.4128990
			2 01 52220	1 (222000	2 22 47(00
		Н	2.9152220	-1.6233080	-2.234/600
		H H	2.9152220 2.5437770	-1.6233080 -2.2432280	-2.2347600
		H H C	2.9152220 2.5437770 2.0682310	-1.6233080 -2.2432280 0.8113390	-2.2347600 -0.6221680 -1.9172980

	Н	3.0819000	0.9310450	-2.3575600
	С	1.5755610	2.1803240	-1.4382330
	Η	1.6372310	2.9015550	-2.2809470
	Н	2.2523020	2.5636320	-0.6585550
	С	-0.8198460	2.0876190	-1.9248570
	Н	-0.4556730	1.4335630	-2.7332290
	Н	-0.9642270	3.0902130	-2.3821180
	С	-2.1699750	1.5738170	-1.4128990
	Н	-2.9152220	1.6233080	-2.2347600
	Н	-2.5437770	2.2432280	-0.6221680
	С	-2.0682310	-0.8113390	-1.9172980
	Η	-1.4224850	-0.4465150	-2.7323840
	Η	-3.0819000	-0.9310450	-2.3575600
	С	-1.5755610	-2.1803240	-1.4382330
	Η	-1.6372310	-2.9015550	-2.2809470
	Η	-2.2523020	-2.5636320	-0.6585550
	С	-0.7474200	0.9705840	2.8809720
	Η	-1.2861480	1.5629270	2.1264210
	С	0.7474200	-0.9705840	2.8809720
	Η	1.2861480	-1.5629270	2.1264210
	Ν	-0.2106150	-2.1309800	-0.8593050
	Ν	2.0762030	-0.2078880	-0.8393540
	Ν	0.2106150	2.1309800	-0.8593050
	Ν	-2.0762030	0.2078880	-0.8393540
	Ο	0.0000000	0.0000000	2.0983930
	С	-0.1198340	-1.8759380	3.7506360
	Η	-0.5948540	-1.3344070	4.5819380
	Η	-0.9081940	-2.3637340	3.1569390
	Η	0.5097350	-2.6630970	4.1953180
	С	0.1198340	1.8759380	3.7506360
	Η	0.5948540	1.3344070	4.5819380
	Η	0.9081940	2.3637340	3.1569390
	Η	-0.5097350	2.6630970	4.1953180
	Η	-1.5041940	0.4461990	3.4904480
	Η	1.5041940	-0.4461990	3.4904480
	Li	0.0000000	0.0000000	0.0560750
-816.4575134	С	2.3402340	-2.1293300	0.9631240
	Н	3.0841600	-2.8462100	0.5569620
	Н	1.7118240	-2.6565650	1.6958570
	Η	2.8910690	-1.3393800	1.4948390
	С	2.0678160	2.3983790	0.9420250
	Η	2.8119940	3.1140710	0.5346000
	Η	2.5270060	1.8755800	1.7945060
	Η	1.2111770	2.9724650	1.3224610
	С	-2.4403270	2.1333300	0.3062580

4. Li-MeOH-1a

S87

	Η	-2.0416360	2.6626950	1.1840390
	Η	-3.1097990	1.3393470	0.6669140
	Η	-3.0455020	2.8472660	-0.2904340
	С	-2.1614500	-2.4049570	0.3404060
	Η	-2.7695720	-3.1133600	-0.2596300
	Η	-2.8294540	-1.8872140	1.0444090
	Η	-1.4390130	-2.9851210	0.9315660
	С	2.3108500	-0.7810710	-1.0621340
	Н	1.7120870	-0.6235120	-1.9740110
	Η	3.2046460	-1.3623720	-1.3759640
	С	2.7654380	0.5720300	-0.5018650
	Η	3.3925490	1.0894160	-1.2576290
	Η	3.4143280	0.4104120	0.3730280
	С	1.0025420	2.1020220	-1.2239910
	Η	0.9563530	1.3876900	-2.0620950
	Η	1.6355700	2.9469040	-1.5714670
	С	-0.4035970	2.6277370	-0.9149610
	Η	-0.7943250	3.1661990	-1.8038080
	Η	-0.3499910	3.3726880	-0.1057910
	С	-1.8484220	0.7889830	-1.6332230
	Η	-1.0194120	0.6311720	-2.3419540
	Η	-2.6202900	1.3695390	-2.1831590
	С	-2.4405230	-0.5649600	-1.2239610
	Η	-2.8426360	-1.0744270	-2.1245860
	Η	-3.3009270	-0.4063220	-0.5552290
	С	-0.5477660	-2.0944560	-1.4526620
	Η	-0.2769330	-1.3767410	-2.2438080
	Η	-1.0602220	-2.9387310	-1.9624180
	С	0.7229240	-2.6193460	-0.7748510
	Η	1.3441010	-3.1520940	-1.5251730
	Η	0.4533050	-3.3689820	-0.0150020
	С	-1.2744880	-0.0218870	3.5111420
	Η	-2.2003600	-0.1257050	2.9320390
	Ν	1.4877120	-1.5450590	-0.0932030
	Ν	1.6228100	1.4134010	-0.0656310
	Ν	-1.3274750	1.5532400	-0.4740920
	Ν	-1.4600970	-1.4135470	-0.5017760
	0	-0.1856770	-0.0144990	2.5555050
	Η	-1.3126750	0.9208640	4.0809640
	Η	-1.1887220	-0.8737450	4.2045570
	Η	0.6476960	0.0477560	3.0495280
	Li	-0.0436740	-0.0008930	0.5443060
-1660.5085	С	-1.3175900	-3.1217390	-0.0440240
	Н	-2.1717970	-3.8077910	0.1300590
	Н	-0.4641550	-3.4666850	0.5575200

5. Li-DCM-1a

Η	-1.0309230	-3.1917110	-1.1029170
С	-0.4432910	0.0752710	-3.1746930
Н	-1.0433170	0.2423800	-4.0923850
Н	0.0180480	-0.9214790	-3.2315970
Н	0.3677880	0.8170690	-3.1531180
С	1.1761950	2.9220940	-0.0780810
Н	1.7923330	2.6411770	-0.9442250
Н	1.7252900	2.6330630	0.8287020
Н	1.0533940	4.0247620	-0.0733390
С	0.5037070	-0.3130170	3.0198200
Н	0.2516900	-0.1496060	4.0873960
Н	1.5053750	0.0982860	2.8282520
Н	0.5479590	-1.3957090	2.8358040
С	-2.7712440	-1.2333390	-0.5262470
Н	-3.2066310	-0.3450790	-0.0399590
Н	-3.5861410	-1.9862290	-0.5826380
С	-2.3183000	-0.8739310	-1.9461050
Н	-3.1986170	-0.5681910	-2.5482180
Н	-1.9040960	-1.7664240	-2.4394060
С	-1.8602530	1.5257350	-1.8189200
Н	-2.6706510	1.4730830	-1.0725670
Н	-2.3360400	1.8440800	-2.7707250
С	-0.8315260	2.5821240	-1.3981050
Н	-1.3333570	3.5685030	-1.3154280
Н	-0.0709700	2.6914860	-2.1865460
С	-0.9498850	2.5419240	1.0484190
Н	-1.9950540	2.2674050	0.8283300
Η	-0.9516030	3.6342660	1.2493840
С	-0.4720440	1.7988300	2.3018180
Н	-1.0921510	2.1017680	3.1704140
Н	0.5590450	2.1022210	2.5397030
С	-1.8343990	-0.2328880	2.3288350
Н	-2.5624040	0.4454630	1.8535750
Н	-2.0894050	-0.2518510	3.4098820
С	-1.9879340	-1.6474590	1.7583060
Н	-3.0183020	-2.0096910	1.9559600
Н	-1.3135170	-2.3349680	2.2919190
С	3.6712190	-1.4592920	-0.5587340
Ν	-1.6482650	-1.7234310	0.3134670
Ν	-1.2626480	0.1723530	-1.9465650
Ν	-0.1246510	2.2180320	-0.1434700
Ν	-0.4752920	0.3248700	2.1115940
Η	3.9624520	-1.6210680	-1.5999020
Н	4.1492220	-2.1633800	0.1283290
Cl	1.8792220	-1.7817660	-0.4599290
Cl	4.1182150	0.1983030	-0.0856920

Li -0.2206130 -0.0049710 -0.0285380

-931.9180205	С	-1.2348810	-3.1514470	0.6484440
	Η	-1.6715870	-3.9801360	0.0517750
	Η	-1.9281520	-2.9130330	1.4693530
	Н	-0.2959360	-3.5124480	1.0937350
	С	3.1534700	-1.2393950	0.6436620
	Н	3.9888760	-1.6543580	0.0408440
	Η	2.9251570	-1.9516680	1.4512180
	Η	3.4993180	-0.3040460	1.1077860
	С	1.2348810	3.1514470	0.6484440
	Η	1.9281520	2.9130330	1.4693530
	Η	0.2959360	3.5124480	1.0937350
	Η	1.6715870	3.9801360	0.0517750
	С	-3.1534700	1.2393950	0.6436620
	Η	-3.9888760	1.6543580	0.0408440
	Η	-2.9251570	1.9516680	1.4512180
	Η	-3.4993180	0.3040460	1.1077860
	С	0.0000000	-2.2298910	-1.2319230
	Η	-0.0999420	-1.4584140	-2.0115410
	Η	-0.2269680	-3.1973850	-1.7309320
	С	1.4551150	-2.2750040	-0.7399750
	Η	2.0982140	-2.6116390	-1.5822070
	Η	1.5548470	-3.0435400	0.0435760
	С	2.2245360	-0.0003510	-1.2287810
	Η	1.4514130	-0.0977130	-2.0070890
	Η	3.1912390	-0.2239660	-1.7308680
	С	2.2698990	1.4521980	-0.7302460
	Η	2.6150910	2.0975870	-1.5672910
	Н	3.0322170	1.5462720	0.0599000
	С	0.0000000	2.2298910	-1.2319230
	Н	0.0999420	1.4584140	-2.0115410
	Η	0.2269680	3.1973850	-1.7309320
	С	-1.4551150	2.2750040	-0.7399750
	Η	-2.0982140	2.6116390	-1.5822070
	Η	-1.5548470	3.0435400	0.0435760
	С	-2.2245360	0.0003510	-1.2287810
	Η	-1.4514130	0.0977130	-2.0070890
	Η	-3.1912390	0.2239660	-1.7308680
	С	-2.2698990	-1.4521980	-0.7302460
	Η	-2.6150910	-2.0975870	-1.5672910
	Η	-3.0322170	-1.5462720	0.0599000
	Ν	-0.9881900	-1.9430380	-0.1642950
	Ν	1.9424140	-0.9955120	-0.1659180
	Ν	0.9881900	1.9430380	-0.1642950
	Ν	-1.9424140	0.9955120	-0.1659180

6. Na-H₂O-1a

	Ο	0.0000000	0.0000000	3.4032070
	Na	0.0000000	0.0000000	1.0629080
	Н	0.3652620	-0.6766780	3.9973220
	Н	-0.3652620	0.6766780	3.9973220
37.97425	С	3.3930960	0.0129500	-0.2217820
	Н	4.3192320	-0.0936900	-0.8259070
	Н	3.4324710	-0.7141270	0.6034670
	Н	3.3888450	1.0216300	0.2169510
	С	0.0000000	3.3907570	-0.2168570
	Н	0.0892990	4.3185440	-0.8210410
	Н	0.7426720	3.4342950	0.5942000
	Н	-0.9995000	3.3777760	0.2421100
	С	-3.3930960	-0.0129500	-0.2217820
	Н	-3.4324710	0.7141270	0.6034670
	Η	-3.3888450	-1.0216300	0.2169510
	Н	-4.3192320	0.0936900	-0.8259070
	С	0.0000000	-3.3907570	-0.2168570
	Н	-0.0892990	-4.3185440	-0.8210410
	Н	-0.7426720	-3.4342950	0.5942000
	Н	0.9995000	-3.3777760	0.2421100
	С	2.0671830	0.8150430	-2.0931570
	Н	1.3796610	0.4366610	-2.8657410
	Н	3.0462820	0.9573800	-2.6012270
	С	1.5785860	2.1862030	-1.6018270
	Η	1.6535670	2.9066890	-2.4455990
	Η	2.2597950	2.5618380	-0.8212980
	С	-0.8198980	2.0724840	-2.0844890
	Н	-0.4471110	1.3932670	-2.8671020
	Η	-0.9689250	3.0558510	-2.5821590
	С	-2.1858600	1.5793880	-1.5839790
	Н	-2.9158390	1.6676320	-2.4183620
	Н	-2.5499250	2.2512740	-0.7898880
	С	-2.0671830	-0.8150430	-2.0931570
	Н	-1.3796610	-0.4366610	-2.8657410
	Н	-3.0462820	-0.9573800	-2.6012270
	С	-1.5785860	-2.1862030	-1.6018270
	Н	-1.6535670	-2.9066890	-2.4455990
	Η	-2.2597950	-2.5618380	-0.8212980
	С	0.8198980	-2.0724840	-2.0844890
	Н	0.4471110	-1.3932670	-2.8671020
	Н	0.9689250	-3.0558510	-2.5821590
	С	2.1858600	-1.5793880	-1.5839790
	Н	2.9158390	-1.6676320	-2.4183620
	Н	2.5499250	-2.2512740	-0.7898880
	С	-0.5120420	-1.0776790	3.4408850

-1087

7. Na-THF-1a

	Η	0.1904730	-1.9289730	3.3906360
	Н	-1.4886590	-1.3942900	3.0426160
	С	-0.5884580	-0.4967980	4.8544910
	Н	-0.5004610	-1.2708650	5.6301540
	Н	-1.5425690	0.0336370	5.0061060
	С	0.5884580	0.4967980	4.8544910
	Н	0.5004610	1.2708650	5.6301540
	Н	1.5425690	-0.0336370	5.0061060
	С	0.5120420	1.0776790	3.4408850
	Н	1.4886590	1.3942900	3.0426160
	Н	-0.1904730	1.9289730	3.3906360
	Ν	2.1719200	-0.2054100	-1.0229820
	Ν	0.2115880	2.1724030	-1.0240570
	Ν	-2.1719200	0.2054100	-1.0229820
	Ν	-0.2115880	-2.1724030	-1.0240570
	Ο	0.0000000	0.0000000	2.5908180
	Na	0.0000000	0.0000000	0.2397040
-1089.180103	С	0.1782150	2.9821090	-1.6563510
	Н	0.7918860	3.8356020	-2.0155760
	Н	-0.6420370	3.3819450	-1.0411240
	Н	-0.2652760	2.4905120	-2.5346650
	С	0.1548990	-1.6324350	-2.9548630
	Н	0.7474870	-1.9959000	-3.8212400
	Н	-0.6663680	-1.0056490	-3.3337450
	Н	-0.2923330	-2.5056540	-2.4579580
	С	0.2244410	-2.9850580	1.6626670
	Н	-0.5966610	-3.3939980	1.0546440
	Н	-0.2165360	-2.5004260	2.5461500
	Н	0.8520060	-3.8314580	2.0147970
	С	0.1402110	1.6250990	2.9454240
	Н	0.7232950	2.0041870	3.8114850
	Н	-0.6684000	0.9826380	3.3251910
	Н	-0.3244070	2.4868140	2.4443050
	С	2.0374270	1.4219950	-1.7090930
	Н	2.8067250	1.0010510	-1.0432670
	Н	2.5492220	2.2077570	-2.3068470
	С	1.5417290	0.3325090	-2.6723740
	Н	2.3806350	0.0534030	-3.3468910
	Н	0.7546990	0.7464780	-3.3234960
	С	2.0413310	-1.7149730	-1.4259070
	Н	2.8276430	-1.0597840	-1.0197580
	Н	2.5311100	-2.3185970	-2.2212910
	С	1.5568010	-2.6762770	-0.3300670
	Н	2.4008670	-3.3472210	-0.0575590
	Н	0.7684100	-3.3306020	-0.7366020

8. Na-DEE-1a

	С	2.0639700	-1.4020590	1.7018960
	Н	2.8236890	-0.9721970	1.0307900
	Н	2.5888550	-2.1817130	2.2962850
	С	1.5620760	-0.3172650	2.6672870
	Н	2.4018890	-0.0272140	3.3359920
	Н	0.7843060	-0.7395110	3.3242000
	С	2.0303720	1.7373510	1.4211970
	Н	2.8266480	1.0940490	1.0151630
	Н	2.5109650	2.3484020	2.2165940
	С	1.5308680	2.6917230	0.3258830
	Н	2.3670550	3.3700300	0.0473630
	Н	0.7389710	3.3396240	0.7357580
	С	-3.4439500	-1.0475410	0.6461340
	Н	-2.7886690	-1.4826900	1.4176820
	С	-3.4524090	1.0185840	-0.6350620
	Η	-2.8018920	1.4564040	-1.4090920
	Ν	0.9681470	2.0144440	-0.8689140
	Ν	0.9732720	-0.8608250	-1.9983550
	Ν	0.9950060	-2.0065500	0.8695270
	Ν	0.9757940	0.8668960	1.9930870
	0	-2.6500490	-0.0110490	0.0058650
	Na	-0.2859990	-0.0013510	0.0018870
	С	-3.9283380	2.0908690	0.3408240
	Н	-4.5788640	1.6747130	1.1252870
	Н	-3.0770220	2.5904240	0.8285490
	Н	-4.5113310	2.8550200	-0.1981460
	С	-3.9146850	-2.1205300	-0.3314140
	Н	-4.5717400	-1.7073820	-1.1120560
	Н	-3.0608240	-2.6108690	-0.8240570
	Н	-4.4890610	-2.8915710	0.2069340
	Н	-4.2976510	-0.5833380	1.1702420
	Н	-4.3041970	0.5476230	-1.1562210
	G			0 =011000
-971.2215438	C	2.0872400	-2.5992130	0.7811000
	H	2.7403180	-3.3450750	0.2805940
	Н	1.3880800	-3.1379590	1.4386690
	Н	2.7236460	-1.9608220	1.4120290
	С	2.4726210	2.1539930	1.0523510
	Н	3.3520540	2.7021970	0.6530100
	Н	2.7948800	1.5772530	1.9324630
	Н	1.7323740	2.8941060	1.3898370
	С	-2.1993060	2.5882180	0.0286370
	Н	-1.8615120	3.0427390	0.9724660
	Η	-3.0454640	1.9233550	0.2564270
	Н	-2.5694660	3.3974470	-0.6359170
	С	-2.5797150	-2.1679550	-0.2271520

9. Na-MeOH-1a

S93

	Н	-3.1957410	-2.6820510	-0.9951490
	Н	-3.2558680	-1.6490830	0.4689370
	Н	-2.0353320	-2.9348940	0.3431710
	С	2.2592510	-1.0059920	-1.0456370
	Н	1.7119820	-0.6911960	-1.9477790
	Н	3.0911170	-1.6512970	-1.4039260
	С	2.8698780	0.2265270	-0.3604450
	Н	3.6373380	0.6591910	-1.0388180
	Н	3.4105340	-0.0881420	0.5469410
	С	1.3807240	2.0203850	-1.1141530
	Н	1.2834450	1.3331690	-1.9691130
	Н	2.1266960	2.7848160	-1.4238060
	С	0.0417190	2.7333010	-0.8708000
	Н	-0.1746850	3.3789380	-1.7498280
	Н	0.1399770	3.4147450	-0.0103490
	С	-1.5596370	1.1318520	-1.8090750
	Н	-0.6775820	0.8753240	-2.4164930
	Н	-2.1732210	1.8145640	-2.4369080
	С	-2.3812980	-0.1377760	-1.5369050
	Н	-2.7834200	-0.5088600	-2.5048730
	Η	-3.2600450	0.1173560	-0.9225180
	С	-0.6842630	-1.8942960	-1.7220900
	Η	-0.2456290	-1.1470860	-2.4016740
	Н	-1.2186780	-2.6206210	-2.3732030
	С	0.4387950	-2.6463230	-0.9912940
	Н	1.0149430	-3.2290830	-1.7430440
	Н	-0.0013630	-3.3883950	-0.3056000
	С	-1.6481770	-0.1010970	3.9657620
	Η	-2.3972630	0.4002100	3.3391670
	Ν	1.3306080	-1.7767540	-0.1841140
	Ν	1.8745290	1.2473110	0.0512940
	Ν	-1.0937630	1.8219490	-0.5813180
	Ν	-1.6342370	-1.2005510	-0.8193290
	Ο	-0.4680060	-0.2798840	3.1434580
	Na	-0.1430080	-0.0273500	0.8256350
	Н	-1.4341830	0.5367530	4.8380090
	Н	-2.0533050	-1.0692580	4.3031990
	Η	0.2255620	-0.6618620	3.7068850
-1815.274373	С	-0.2669720	-3.3455370	0.6530450
	Н	-0.8883290	-4.1839510	1.0327010
	Н	0.6609380	-3.3074300	1.2435240
	Н	0.0042460	-3.5694020	-0.3890990
	С	-0.6872050	-0.6591310	-3.3056650
	Н	-1.4335500	-0.9010630	-4.0912750
	Η	0.0925870	-1.4354710	-3.3160030

10. Na-DCM-1a

	Н	-0.2134120	0.2980320	-3.5685120
	С	-0.0559370	3.3417640	-0.7324930
	Н	0.6310810	3.1970520	-1.5799370
	Н	0.5504300	3.5127720	0.1691370
	Н	-0.6551600	4.2575830	-0.9203020
	С	0.4603880	0.6444230	3.2063090
	Н	0.0440680	0.9632840	4.1851590
	Η	1.2949030	1.3139040	2.9484320
	Н	0.8671510	-0.3706800	3.3239000
	С	-2.1870750	-2.0661810	-0.1092170
	Η	-2.8598870	-1.2659390	0.2369020
	Η	-2.7467990	-3.0163800	0.0300320
	С	-1.9077770	-1.8869580	-1.6096260
	Η	-2.8573270	-2.0494700	-2.1644110
	Η	-1.2167630	-2.6735110	-1.9527760
	С	-2.3022250	0.5107100	-1.9146700
	Η	-2.9734070	0.3257960	-1.0613150
	Η	-2.9487580	0.4869280	-2.8189170
	С	-1.6982620	1.9185530	-1.7976590
	Η	-2.5233620	2.6584980	-1.8864570
	Н	-1.0302850	2.1056310	-2.6538000
	С	-1.7819080	2.2989380	0.6234230
	Н	-2.6268920	1.6002360	0.5220320
	Н	-2.2298430	3.3161220	0.6498350
	С	-1.0687960	2.0536750	1.9621710
	Н	-1.7639410	2.3274060	2.7852730
	Н	-0.2086320	2.7366090	2.0509080
	С	-1.6506470	-0.2810980	2.4284520
	Н	-2.5290840	0.0060920	1.8289890
	Н	-1.9679410	-0.1957260	3.4907370
	С	-1.2973190	-1.7511090	2.1537790
	Η	-2.1378080	-2.3838620	2.5134760
	Η	-0.4214080	-2.0376620	2.7577560
	С	4.1589580	-0.2583890	-0.3820530
	Ν	-0.9681970	-2.0474280	0.7362980
	Ν	-1.2962690	-0.5792420	-1.9609050
	Ν	-0.9038960	2.1436660	-0.5631560
	Ν	-0.5529400	0.6711330	2.1306940
	Na	0.2549530	-0.0293640	-0.0997890
	Н	4.7075070	-0.2819060	-1.3277340
	Н	4.8103240	-0.3765740	0.4885690
	Cl	2.9930030	-1.6372980	-0.3883540
	Cl	3.3318590	1.3332530	-0.2519080
1000 004000	~	0.000/050	0.0050500	0 400 4550
-1369.594606	C	-2.0296250	2.8052780	0.4094550
	Н	-2.4665710	3.5981390	-0.2351150

11. K-H₂O-1a

Η	-1.4857420	3.2958360	1.2322670
Н	-2.8605070	2.2310320	0.8469200
С	-2.7948490	-2.0176530	0.4294860
Н	-3.5957570	-2.4584060	-0.2024170
Н	-3.2738560	-1.4655690	1.2535890
Н	-2.2186180	-2.8459450	0.8692700
С	2.0296250	-2.8052780	0.4094550
Н	1.4857420	-3.2958360	1.2322670
Н	2.8605070	-2.2310320	0.8469200
Н	2.4665710	-3.5981390	-0.2351150
С	2.7948490	2.0176530	0.4294860
Н	3.5957570	2.4584060	-0.2024170
Н	3.2738560	1.4655690	1.2535890
Н	2.2186180	2.8459450	0.8692700
С	-1.8651320	1.1932400	-1.3943130
Н	-1.1448720	0.8483430	-2.1516940
Н	-2.5526440	1.8869230	-1.9276950
С	-2.6959390	-0.0005320	-0.8983770
Н	-3.3356330	-0.3468120	-1.7411590
Н	-3.3931120	0.3378080	-0.1139110
С	-1.1966040	-1.8742070	-1.3895120
Н	-0.8579210	-1.1619740	-2.1572550
Н	-1.8951920	-2.5665040	-1.9102540
С	0.0000000	-2.7022010	-0.8959140
Н	0.3433310	-3.3429550	-1.7391710
Н	-0.3349720	-3.3980860	-0.1088520
С	1.8651320	-1.1932400	-1.3943130
Н	1.1448720	-0.8483430	-2.1516940
Н	2.5526440	-1.8869230	-1.9276950
С	2.6959390	0.0005320	-0.8983770
Н	3.3356330	0.3468120	-1.7411590
Н	3.3931120	-0.3378080	-0.1139110
С	1.1966040	1.8742070	-1.3895120
Н	0.8579210	1.1619740	-2.1572550
Н	1.8951920	2.5665040	-1.9102540
С	0.0000000	2.7022010	-0.8959140
Н	-0.3433310	3.3429550	-1.7391710
Н	0.3349720	3.3980860	-0.1088520
Ν	-1.1212080	1.9110010	-0.3329930
Ν	-1.9052340	-1.1190360	-0.3301260
Ν	1.1212080	-1.9110010	-0.3329930
Ν	1.9052340	1.1190360	-0.3301260
0	0.0000000	0.0000000	4.1646260
Κ	0.0000000	0.0000000	1.4463330
Н	-0.4975660	0.5817760	4.7636870
Н	0.4975660	-0.5817760	4.7636870

С	2.8141850	2.0289500	-0.5314550
Η	3.6032670	2.4663270	-1.1805880
Η	3.3091000	1.4833990	0.2873770
Η	2.2432470	2.8590760	-0.0884740
С	-2.0254280	2.7944060	-0.5155990
Н	-2.4623040	3.5924450	-1.1539800
Н	-1.4794640	3.2773040	0.3101700
Н	-2.8560090	2.2183150	-0.0802790
С	-2.8141850	-2.0289500	-0.5314550
Н	-3.3091000	-1.4833990	0.2873770
Н	-2.2432470	-2.8590760	-0.0884740
Н	-3.6032670	-2.4663270	-1.1805880
С	2.0254280	-2.7944060	-0.5155990
Н	2.4623040	-3.5924450	-1.1539800
Н	1.4794640	-3.2773040	0.3101700
Н	2.8560090	-2.2183150	-0.0802790
С	1.1945720	1.8701900	-2.3275890
Н	0.8507160	1.1532170	-3.0884900
Н	1.8871500	2.5610260	-2.8581830
С	0.0000000	2.6973470	-1.8279050
Η	-0.3449780	3.3422370	-2.6674880
Η	0.3372160	3.3894110	-1.0383990
С	-1.8668060	1.1929130	-2.3295320
Н	-1.1483990	0.8497140	-3.0894050
Н	-2.5533310	1.8905240	-2.8593800
С	-2.7004570	-0.0010490	-1.8389320
Н	-3.3371300	-0.3441670	-2.6854930
Η	-3.4002960	0.3364960	-1.0565080
С	-1.1945720	-1.8701900	-2.3275890
Η	-0.8507160	-1.1532170	-3.0884900
Η	-1.8871500	-2.5610260	-2.8581830
С	0.0000000	-2.6973470	-1.8279050
Η	0.3449780	-3.3422370	-2.6674880
Η	-0.3372160	-3.3894110	-1.0383990
С	1.8668060	-1.1929130	-2.3295320
Η	1.1483990	-0.8497140	-3.0894050
Η	2.5533310	-1.8905240	-2.8593800
С	2.7004570	0.0010490	-1.8389320
Η	3.3371300	0.3441670	-2.6854930
Η	3.4002960	-0.3364960	-1.0565080
С	-1.0989850	-0.4588990	4.0935490
Η	-1.1470260	-1.5627880	4.0460090
Η	-2.0397380	-0.0432420	3.6974330
С	-0.7697380	0.0246960	5.5082100
Н	-1.2237760	-0.6080460	6.2844560

12. K-THF-1a

-1525.651647

		Н	-1.1226590	1.0584760	5.6574420
		С	0.7697380	-0.0246960	5.5082100
		Н	1.2237760	0.6080460	6.2844560
		Н	1.1226590	-1.0584760	5.6574420
		С	1.0989850	0.4588990	4.0935490
		Н	2.0397380	0.0432420	3.6974330
		Н	1.1470260	1.5627880	4.0460090
		Ν	1.9145880	1.1228160	-1.2702370
		Ν	-1.1200030	1.9041930	-1.2663880
		Ν	-1.9145880	-1.1228160	-1.2702370
		Ν	1.1200030	-1.9041930	-1.2663880
		0	0.0000000	0.0000000	3.2433340
		K	0.0000000	0.0000000	0.5223510
13. K-DCM-1a	-2252.955018	С	-1.7498730	-0.2471260	-3.3075630
		Н	-2.6822660	-0.3769370	-3.8979800
		Н	-1.0391670	-1.0299630	-3.6160310
		Н	-1.3160580	0.7284200	-3.5749600
		С	-0.3723000	3.4305440	-0.3760970
		Н	-0.9827890	4.3569640	-0.3143580
		Н	0.1248090	3.4139820	-1.3586080
		Н	0.4081680	3.4902570	0.3975070
		С	0.7997050	0.2166930	3.1085080
		Н	1.6108530	0.8993060	2.8104990
		Н	1.1859760	-0.8121390	3.0513780
		Н	0.5427800	0.4254700	4.1693030
		С	-0.5862890	-3.4621900	0.1909470
		Н	-1.1777020	-4.3102900	0.5980260
		Н	0.4411030	-3.5453070	0.5786310
		Н	-0.5456280	-3.5753450	-0.9030610
		С	-2.8902160	0.7690530	-1.4223080
		Н	-3.3567910	0.4805460	-0.4682690
		Н	-3.7293280	0.8881560	-2.1428700
		С	-2.2091670	2.1377160	-1.2663770
		Н	-3.0047160	2.8999300	-1.1082840
		Н	-1.7149560	2.4120760	-2.2130170
		С	-1.7975960	2.1962310	1.1494090
		Н	-2.6629050	1.5166890	1.1289020
		Н	-2.2091950	3.1990790	1.4002830
		С	-0.8478450	1.7807580	2.2837020
		Н	-1.3652620	1.9699410	3.2507450
		Н	0.0370710	2.4385430	2.2828060
		С	-1.4207820	-0.5872790	2.5480250
		Н	-2.3741440	-0.2098710	2.1480560
		Н	-1.5589320	-0.6444270	3.6505890
		С	-1.1771170	-2.0138110	2.0313060

		Η	-1.9459550	-2.6785000	2.4849800
		Η	-0.2061430	-2.3795250	2.4047390
		С	-2.5175830	-2.0101030	-0.0195940
		Η	-3.0557450	-1.2374060	0.5499750
		Η	-3.0993490	-2.9479550	0.1211650
		С	-2.5489930	-1.6565280	-1.5144060
		Η	-3.6003290	-1.7499040	-1.8671510
		Η	-1.9741850	-2.4066420	-2.0822260
		С	4.7572350	-0.0981150	-0.6181370
		Ν	-1.9871660	-0.3253440	-1.8525750
		Ν	-1.1811740	2.2087830	-0.1983890
		Ν	-0.3553830	0.3834070	2.2049980
		Ν	-1.1580490	-2.1503710	0.5535200
		Η	5.4104350	-0.1575870	0.2562550
		Η	5.3119270	-0.0430990	-1.5580330
		Cl	3.7718870	1.4035120	-0.4704020
		Cl	3.7497640	-1.5913980	-0.6576240
		Κ	0.4630360	-0.0721460	-0.4568380
K-MeOH-1a	-1408.898438	С	1.6504970	-1.3095950	2.6977940
		Н	1.5169950	-1.5102980	3.7828560
		Η	2.5628010	-0.7058710	2.5710340
		Η	1.8122340	-2.2745840	2.1939450
		С	-0.6856190	-3.1989750	-1.1766220
		Η	-1.4016390	-4.0388560	-1.0469260
		Η	0.3312730	-3.5904310	-1.0143850
		Η	-0.7538490	-2.8565530	-2.2205940
		С	-1.4142060	1.2946730	-2.9318230
		Η	-0.9033140	0.6016920	-3.6187620
		Η	-0.8062130	2.2092190	-2.8614540
		Η	-2.3916480	1.5704730	-3.3835410
		С	0.9064730	3.1973150	0.9370380
		Η	0.5072560	4.1011900	1.4456620
		Η	1.3105990	3.5063100	-0.0399610
		Η	1.7414000	2.8122670	1.5422580
		С	-0.7200690	-1.4474760	2.2065920
		Η	-1.6013480	-0.7929350	2.1318700
		Η	-0.7859100	-1.9262520	3.2090420
		С	-0.8197430	-2.5584750	1.1490590
		Η	-1.6706620	-3.2200140	1.4272530
		Η	0.0814260	-3.1924460	1.1958250
		С	-2.2885030	-1.5061320	-0.5060320
		Η	-2.6053020	-0.9562700	0.3928320
		Η	-3.0415580	-2.3129040	-0.6488040
		С	-2.3620180	-0.5720350	-1.7239490
		Н	-3.4341900	-0.3420370	-1.9155840

14. **k**

	Н	-2.0055320	-1.1060760	-2.6204760
	С	-2.1782780	1.6226040	-0.6519570
	Η	-2.6138080	1.0480880	0.1793750
	Η	-3.0312440	2.1548630	-1.1288850
	С	-1.2190740	2.6842280	-0.0903910
	Н	-1.8265870	3.4313570	0.4681690
	Н	-0.7552390	3.2385140	-0.9232000
	С	-0.6171520	1.6847530	2.0649960
	Η	-1.6016100	1.2167570	1.9153530
	Η	-0.7941220	2.5465970	2.7464570
	С	0.3120630	0.6979220	2.7892850
	Η	-0.0747680	0.5603460	3.8240480
	Η	1.3119480	1.1497650	2.9007960
	С	4.5955080	0.1637570	-1.9855620
	Н	4.3533660	1.1729170	-1.6257070
	Ν	0.4949450	-0.6066880	2.1081490
	Ν	-0.9478760	-2.0821000	-0.2496950
	Ν	-1.5607460	0.6699500	-1.6033980
	Ν	-0.1187500	2.1531860	0.7510670
	0	3.4262790	-0.6576460	-1.7514550
	Н	4.8402590	0.2223240	-3.0590590
	Н	5.4703990	-0.2083110	-1.4268360
	Н	3.6404180	-1.5517410	-2.0669180
	Κ	1.0092450	-0.0606180	-0.6330250
-1526.859645	С	3.2149690	-1.2723830	-0.3744250
	Н	4.0111710	-1.7091770	-1.0155290
	Η	3.0140720	-1.9770270	0.4480660
	Н	3.6093320	-0.3431900	0.0642030
	С	1.2767730	3.2350720	-0.4025390
	Н	1.6918850	4.0274080	-1.0626890
	Η	1.9992730	3.0539070	0.4084840
	Η	0.3513840	3.6236580	0.0491140
	С	-3.2149690	1.2723830	-0.3744250
	Η	-3.0140720	1.9770270	0.4480660
	Η	-3.6093320	0.3431900	0.0642030
	Η	-4.0111710	1.7091770	-1.0155290
	С	-1.2767730	-3.2350720	-0.4025390
	Η	-1.6918850	-4.0274080	-1.0626890
	Η	-1.9992730	-3.0539070	0.4084840
	Η	-0.3513840	-3.6236580	0.0491140
	С	2.2197330	0.0011310	-2.1821260
		1 4202050	-0.0943980	-2 9415520
	Н	1.4292050	-0.0745700	-2.7+15520
	H H	1.4292030 3.1734570	-0.2165700	-2.7127520
	H H C	1.42920303.17345702.2783150	-0.2165700 1.4555180	-2.7127520 -1.6902480

15. K-DEE-1a

		Н	3.0456950	1.5481790	-0.9038390
		С	0.0000000	2.2080660	-2.1870620
		Н	0.0922150	1.4059360	-2.9345430
		Н	0.2137710	3.1540900	-2.7328070
		С	-1.4511030	2.2710600	-1.6866650
		Н	-2.0884910	2.6262690	-2.5273500
		Н	-1.5369210	3.0385030	-0.8995920
		С	-2.2197330	-0.0011310	-2.1821260
		Н	-1.4292050	0.0943980	-2.9415520
		Η	-3.1734570	0.2165700	-2.7127520
		С	-2.2783150	-1.4555180	-1.6902480
		Η	-2.6324580	-2.0875540	-2.5355340
		Η	-3.0456950	-1.5481790	-0.9038390
		С	0.0000000	-2.2080660	-2.1870620
		Η	-0.0922150	-1.4059360	-2.9345430
		Н	-0.2137710	-3.1540900	-2.7328070
		С	1.4511030	-2.2710600	-1.6866650
		Η	2.0884910	-2.6262690	-2.5273500
		Η	1.5369210	-3.0385030	-0.8995920
		С	-1.0220830	-0.6081320	4.3023710
		Η	-1.4813980	0.1678150	4.9451840
		С	1.0220830	0.6081320	4.3023710
		Η	0.5547180	1.3602710	4.9673510
		Ν	1.9720160	-1.0024010	-1.1213590
		Ν	1.0093700	1.9786760	-1.1275770
		Ν	-1.9720160	1.0024010	-1.1213590
		Ν	-1.0093700	-1.9786760	-1.1275770
		0	0.0000000	0.0000000	3.4826740
		Η	-0.5547180	-1.3602710	4.9673510
		С	-2.0707830	-1.2584390	3.4150460
		Η	-2.8549180	-1.7174750	4.0362300
		Η	-2.5590020	-0.5161810	2.7626790
		Η	-1.6297800	-2.0562430	2.7958970
		Η	1.4813980	-0.1678150	4.9451840
		С	2.0707830	1.2584390	3.4150460
		Η	2.5590020	0.5161810	2.7626790
		Η	1.6297800	2.0562430	2.7958970
		Η	2.8549180	1.7174750	4.0362300
		Κ	0.0000000	0.0000000	0.6773390
$16 [Ii(Me.cyclen)]^+$	-700 680022	C	_0 3373210	3 1/3/800	1 1131/20
10. [LI(Me ₄ cyclen)]	-700.080022	с u	-0.3373210	J.1434800 4 1486120	0.6470880
		н Ц	0.5700040	3 1500770	1 9125660
		н Ц	-1 3127520	2 0207000	1.9133000
		C	-1.512/550	_0 3373010	1 1131/20
		с Ц	-3.1434000	-0.3373210	0.6470880
		п	-4.1400120	-0.3/80040	0.04/0880

	Η	-3.1599270	0.4168360	1.9135660
	Η	-2.9397090	-1.3127530	1.5771430
	С	0.3373210	-3.1434800	1.1131480
	Η	-0.4168360	-3.1599270	1.9135660
	Η	1.3127530	-2.9397090	1.5771430
	Η	0.3786040	-4.1486120	0.6470880
	С	3.1434800	0.3373210	1.1131480
	Η	4.1486120	0.3786040	0.6470880
	Η	3.1599270	-0.4168360	1.9135660
	Η	2.9397090	1.3127530	1.5771430
	С	-1.0314950	2.0091040	-0.9339320
	Η	-0.6125960	1.4289810	-1.7732120
	Η	-1.2663560	3.0159640	-1.3390160
	С	-2.3276120	1.3503080	-0.4427780
	Η	-3.0618440	1.3180080	-1.2732070
	Η	-2.7828670	1.9710550	0.3441620
	С	-2.0091040	-1.0314950	-0.9339320
	Η	-1.4289810	-0.6125960	-1.7732120
	Η	-3.0159640	-1.2663560	-1.3390160
	С	-1.3503080	-2.3276120	-0.4427780
	Η	-1.3180080	-3.0618440	-1.2732070
	Η	-1.9710550	-2.7828670	0.3441620
	С	1.0314950	-2.0091040	-0.9339320
	Η	0.6125960	-1.4289810	-1.7732120
	Η	1.2663560	-3.0159640	-1.3390160
	С	2.3276120	-1.3503080	-0.4427780
	Η	3.0618440	-1.3180080	-1.2732070
	Η	2.7828670	-1.9710550	0.3441620
	С	2.0091040	1.0314950	-0.9339320
	Н	1.4289810	0.6125960	-1.7732120
	Н	3.0159640	1.2663560	-1.3390160
	С	1.3503080	2.3276120	-0.4427780
	Н	1.3180080	3.0618440	-1.2732070
	Н	1.9710550	2.7828670	0.3441620
	Ν	0.0000000	2.0863780	0.1329340
	Ν	-2.0863780	0.0000000	0.1329340
	Ν	0.0000000	-2.0863780	0.1329340
	Ν	2.0863780	0.0000000	0.1329340
	Li	0.0000000	0.0000000	0.7390880
-855.4430547	С	-0.3299880	3.3762830	0.9074720
	Ĥ	-0.3149450	4.3093360	0.3065840
	Н	0.3942410	3.4826540	1.7293700
	Н	-1.3311630	3.2737840	1.3510780
	C	-3.3762830	-0.3299880	0.9074720
	н	-4 3093360	-0 3149450	0 3065840
	11	1.5075500	0.5177750	0.20020-0

17. [Na(Me₄cyclen)]⁺

	Н	-3.4826540	0.3942410	1.7293700
	Н	-3.2737840	-1.3311630	1.3510780
	С	0.3299880	-3.3762830	0.9074720
	Н	-0.3942410	-3.4826540	1.7293700
	Н	1.3311630	-3.2737840	1.3510780
	Н	0.3149450	-4.3093360	0.3065840
	С	3.3762830	0.3299880	0.9074720
	Н	4.3093360	0.3149450	0.3065840
	Н	3.4826540	-0.3942410	1.7293700
	Н	3.2737840	1.3311630	1.3510780
	С	-1.0147750	1.9874040	-0.9693510
	Н	-0.5752120	1.3470610	-1.7500920
	Н	-1.2533980	2.9526230	-1.4654930
	С	-2.3305490	1.3643130	-0.4751200
	Н	-3.0573320	1.3710620	-1.3157320
	Н	-2.7686930	2.0017170	0.3097080
	С	-1.9874040	-1.0147750	-0.9693510
	Н	-1.3470610	-0.5752120	-1.7500920
	Н	-2.9526230	-1.2533980	-1.4654930
	С	-1.3643130	-2.3305490	-0.4751200
	Н	-1.3710620	-3.0573320	-1.3157320
	Н	-2.0017170	-2.7686930	0.3097080
	С	1.0147750	-1.9874040	-0.9693510
	Н	0.5752120	-1.3470610	-1.7500920
	Н	1.2533980	-2.9526230	-1.4654930
	С	2.3305490	-1.3643130	-0.4751200
	Н	3.0573320	-1.3710620	-1.3157320
	Н	2.7686930	-2.0017170	0.3097080
	С	1.9874040	1.0147750	-0.9693510
	Н	1.3470610	0.5752120	-1.7500920
	Н	2.9526230	1.2533980	-1.4654930
	С	1.3643130	2.3305490	-0.4751200
	Н	1.3710620	3.0573320	-1.3157320
	Н	2.0017170	2.7686930	0.3097080
	Ν	0.0000000	2.1832520	0.0976680
	Ν	-2.1832520	0.0000000	0.0976680
	Ν	0.0000000	-2.1832520	0.0976680
	Ν	2.1832520	0.0000000	0.0976680
	Na	0.0000000	0.0000000	1.2265070
-1293.124359	С	-0.3278780	3.4510820	0.7109140
	Н	-0.3004260	4.3534650	0.0636680
	Н	0.3894290	3.5996730	1.5334640
	Н	-1.3354560	3.3809650	1.1477550
	С	-3.4510820	-0.3278780	0.7109140
	Н	-4.3534650	-0.3004260	0.0636680

18. [K(Me₄cyclen)]⁺

	Η	-3.5996730	0.3894290	1.5334640
	Η	-3.3809650	-1.3354560	1.1477550
	С	0.3278780	-3.4510820	0.7109140
	Η	-0.3894290	-3.5996730	1.5334640
	Η	1.3354560	-3.3809650	1.1477550
	Η	0.3004260	-4.3534650	0.0636680
	С	3.4510820	0.3278780	0.7109140
	Н	4.3534650	0.3004260	0.0636680
	Η	3.5996730	-0.3894290	1.5334640
	Η	3.3809650	1.3354560	1.1477550
	С	-1.0067070	1.9753510	-1.0912770
	Η	-0.5613670	1.3117090	-1.8475690
	Η	-1.2456260	2.9216520	-1.6247300
	С	-2.3289020	1.3681780	-0.5953580
	Η	-3.0547280	1.3937440	-1.4383130
	Η	-2.7588270	2.0114530	0.1903250
	С	-1.9753510	-1.0067070	-1.0912770
	Η	-1.3117090	-0.5613670	-1.8475690
	Η	-2.9216520	-1.2456260	-1.6247300
	С	-1.3681780	-2.3289020	-0.5953580
	Η	-1.3937440	-3.0547280	-1.4383130
	Н	-2.0114530	-2.7588270	0.1903250
	С	1.0067070	-1.9753510	-1.0912770
	Η	0.5613670	-1.3117090	-1.8475690
	Н	1.2456260	-2.9216520	-1.6247300
	С	2.3289020	-1.3681780	-0.5953580
	Η	3.0547280	-1.3937440	-1.4383130
	Η	2.7588270	-2.0114530	0.1903250
	С	1.9753510	1.0067070	-1.0912770
	Η	1.3117090	0.5613670	-1.8475690
	Η	2.9216520	1.2456260	-1.6247300
	С	1.3681780	2.3289020	-0.5953580
	Η	1.3937440	3.0547280	-1.4383130
	Η	2.0114530	2.7588270	0.1903250
	Ν	0.0000000	2.2159940	-0.0292960
	Ν	-2.2159940	0.0000000	-0.0292960
	Ν	0.0000000	-2.2159940	-0.0292960
	Ν	2.2159940	0.0000000	-0.0292960
	Κ	0.0000000	0.0000000	1.6915350
(02 0220112	C	0.1200050	2 7057000	0.5752000
-693.2330113	C	-0.1388050	5.7857800	0.5/52080
	H	-0.1118/00	4.5910520	-0.20016/0
	H	0.3968030	4.0569450	1.3303390
	H C	-1.1308200	3.8001160 0.2606660	1.0412860
	U	-2.493/300	-0.3090000	1.4/82390
	Н	-3.39866/0	-0.5169800	1.3013540

19. Me₄cyclen

		Η	-2.3314800	0.4105770	2.2368310
		Η	-2.0594080	-1.3013270	1.8699180
		С	0.1388050	-3.7857800	0.5752080
		Η	-0.5968050	-4.0369430	1.3563390
		Н	1.1368200	-3.8061160	1.0412860
		Н	0.1118700	-4.5910520	-0.2001670
		С	2.4957300	0.3696660	1.4782590
		Н	3.5986670	0.5169800	1.3613540
		Η	2.3314800	-0.4105770	2.2368310
		Η	2.0594080	1.3013270	1.8699180
		С	-0.9081560	2.0332820	-0.9014250
		Η	-0.4785750	1.3105060	-1.6119450
		Η	-1.2691030	2.8935480	-1.5154230
		С	-2.1081140	1.3719920	-0.1968270
		Η	-2.9962460	1.4113840	-0.8749880
		Н	-2.3729340	1.9729350	0.6883920
		С	-1.9936060	-0.9623160	-0.8256350
		Н	-1.4719720	-0.5783890	-1.7191980
		Н	-3.0703110	-1.0612500	-1.1266720
		С	-1.4949750	-2.3846950	-0.5107810
		Н	-1.6148840	-2.9922450	-1.4432980
		Н	-2.1674610	-2.8457880	0.2329930
		С	0.9081560	-2.0332820	-0.9014250
		Н	0.4785750	-1.3105060	-1.6119450
		Н	1.2691030	-2.8935480	-1.5154230
		С	2.1081140	-1.3719920	-0.1968270
		Н	2.9962460	-1.4113840	-0.8749880
		Н	2.3729340	-1.9729350	0.6883920
		С	1.9936060	0.9623160	-0.8256350
		Н	1.4719720	0.5783890	-1.7191980
		Η	3.0703110	1.0612500	-1.1266720
		С	1.4949750	2.3846950	-0.5107810
		Η	1.6148840	2.9922450	-1.4432980
		Н	2.1674610	2.8457880	0.2329930
		Ν	0.1388050	2.4576730	0.0368450
		Ν	-1.8156490	0.0081990	0.2476960
		Ν	-0.1388050	-2.4576730	0.0368450
		Ν	1.8156490	-0.0081990	0.2476960
20. [Li-H ₂ O] ⁺	-83.78571584	0	0.0000000	0.0000000	0.3358430
		Li	0.0000000	0.0000000	-1.5135590
		Н	0.0000000	0.7749000	0.9269650
		Η	0.0000000	-0.7749000	0.9269650
21. [Li-THF]+	-239.853071	С	0.0000000	1.2122260	0.1947180
		Н	1.0050430	1.6606760	0.2505000

		Η	-0.7468410	1.9119140	0.5985870
		С	-0.3243860	0.6985990	-1.2045710
		Н	0.0825700	1.3573790	-1.9844160
		Н	-1.4135850	0.6250370	-1.3505110
		С	0.3243860	-0.6985990	-1.2045710
		Н	-0.0825700	-1.3573790	-1.9844160
		Н	1.4135850	-0.6250370	-1.3505110
		С	0.0000000	-1.2122260	0.1947180
		Н	0.7468410	-1.9119140	0.5985870
		Н	-1.0050430	-1.6606760	0.2505000
		0	0.0000000	0.0000000	1.0600930
		Li	0.0000000	0.0000000	2.8697220
22. [Li-DEE]+, TT	-241.0644623	С	0.0000000	1.2288060	-0.6700530
		Н	-0.8970610	1.2226970	-1.3115020
		С	0.0000000	-1.2288060	-0.6700530
		Н	-0.8970610	-1.2226970	-1.3115020
		0	0.0000000	0.0000000	0.1262380
		Н	0.8970610	1.2226970	-1.3115020
		С	0.0000000	2.4125160	0.2813210
		Η	0.0000000	3.3533720	-0.2889990
		Η	-0.9063260	2.4313280	0.9121810
		Η	0.9063260	2.4313280	0.9121810
		Н	0.8970610	-1.2226970	-1.3115020
		С	0.0000000	-2.4125160	0.2813210
		Η	0.9063260	-2.4313280	0.9121810
		Η	-0.9063260	-2.4313280	0.9121810
		Н	0.0000000	-3.3533720	-0.2889990
		Li	0.0000000	0.0000000	1.9433870
23. [Li-DEE]+, TG	-241.0620616	С	0.8745160	-0.6619910	0.2490540
		Н	0.4801080	-1.4725260	-0.3830840
		С	-1.3608360	0.3649820	0.5121140
		Η	-1.3450140	-0.0768410	1.5224330
		0	0.0406940	0.5284250	0.0844910
		Η	0.8291430	-0.9747200	1.3058400
		С	2.2923250	-0.2896640	-0.1601050
		Η	2.9638650	-1.1537600	-0.0484740
		Η	2.3528400	-0.0018000	-1.2274820
		Н	2.7147890	0.5041990	0.4854590
		Η	-1.7457230	1.3927440	0.5973570
		С	-2.1893970	-0.4574100	-0.4616870
		Η	-2.1783050	-0.0193670	-1.4713980
		Η	-1.8543110	-1.5033060	-0.5220110
		Η	-3.2345280	-0.4719360	-0.1140740
		Li	0.9973130	1.9381370	-0.5522480

24. [Li-DEE]+, GG	-241.0586271	С	0.0000000	1.2387030	-0.1222050
		Н	0.4709410	2.0033970	0.5171070
		С	0.0000000	-1.2387030	-0.1222050
		Н	-0.4709410	-2.0033970	0.5171070
		0	0.0000000	0.0000000	0.6838990
		С	1.4009910	-1.6485060	-0.5469180
		Н	1.8788210	-0.8897450	-1.1844880
		Н	2.0516100	-1.8383030	0.3208990
		Н	1.3434040	-2.5799820	-1.1322310
		С	-1.4009910	1.6485060	-0.5469180
		Н	-1.8788210	0.8897450	-1.1844880
		Н	-2.0516100	1.8383030	0.3208990
		Н	-1.3434040	2.5799820	-1.1322310
		Н	0.6671540	1.0785570	-0.9831360
		Η	-0.6671540	-1.0785570	-0.9831360
		Li	0.0000000	0.0000000	2.4939920
25. [Li-MeOH] ⁺	-123.093297	С	0.4534040	-0.8705130	0.0000000
		Н	-0.4472060	-1.4970820	0.0000000
		0	0.0000000	0.5317400	0.0000000
		Н	1.0418950	-1.0697020	0.9057050
		Н	1.0418950	-1.0697020	-0.9057050
		Н	0.7904970	1.0998730	0.0000000
		Li	-1.7158340	1.1685920	0.0000000
26. [Li-DCM]+	-967.1377204	С	0.0000000	0.0000000	0.9518100
		Н	-0.9175920	0.0000000	1.5470340
		Н	0.9175920	0.0000000	1.5470340
		Cl	0.0000000	1.4891480	-0.0852950
		Cl	0.0000000	-1.4891480	-0.0852950
		Li	0.0000000	0.0000000	-1.9682950
27. [Na-H ₂ O] ⁺	-238.5749927	0	0.0000000	0.0000000	-1.1079500
		Na	0.0000000	0.0000000	1.1156060
		Н	0.0000000	0.7694780	-1.7040350
		Η	0.0000000	-0.7694780	-1.7040350
28. [Na-THF]+	-394.637953	С	0.5028600	1.0933330	-0.3345450
		Н	1.6050710	1.0902640	-0.2826950
		Н	0.1175920	2.0445760	0.0644150
		С	0.0000000	0.7701740	-1.7396740
		Н	0.6475860	1.1984570	-2.5176050
		Н	-1.0194970	1.1602100	-1.8882020
		С	0.0000000	-0.7701740	-1.7396740
		Н	-0.6475860	-1.1984570	-2.5176050

		Н	1.0194970	-1.1602100	-1.8882020
		С	-0.5028600	-1.0933330	-0.3345450
		Н	-0.1175920	-2.0445760	0.0644150
		Н	-1.6050710	-1.0902640	-0.2826950
		0	0.0000000	0.0000000	0.5261950
		Na	0.0000000	0.0000000	2.7208410
29. [Na-DEE] ⁺ , TT	-395.8489991	С	0.0000000	1.2131760	-1.0368080
		Н	-0.8957180	1.2081510	-1.6827640
		С	0.0000000	-1.2131760	-1.0368080
		Н	-0.8957180	-1.2081510	-1.6827640
		0	0.0000000	0.0000000	-0.2315660
		Н	0.8957180	1.2081510	-1.6827640
		С	0.0000000	2.4173770	-0.1098970
		Н	0.0000000	3.3467830	-0.6989460
		Н	-0.9059310	2.4465050	0.5208590
		Н	0.9059310	2.4465050	0.5208590
		Н	0.8957180	-1.2081510	-1.6827640
		С	0.0000000	-2.4173770	-0.1098970
		Н	0.9059310	-2.4465050	0.5208590
		Н	-0.9059310	-2.4465050	0.5208590
		Н	0.0000000	-3.3467830	-0.6989460
		Na	0.0000000	0.0000000	1.9689540
30. [Na-DEE]+, TG	-395.8464039	С	0.3994790	-1.2300880	0.1338850
		Н	-0.1490160	-1.7609840	-0.6615610
		С	-1.5004690	0.2363140	0.5980880
		Н	-1.6733210	-0.4318290	1.4597030
		Ο	-0.0848450	0.1397860	0.2296010
		Н	0.2042670	-1.7389920	1.0945420
		С	1.8889700	-1.2015470	-0.1721140
		Н	2.2820570	-2.2270770	-0.2384170
		Н	2.0993160	-0.7309430	-1.1502160
		Н	2.4633500	-0.7031410	0.6300800
		Н	-1.6325670	1.2722100	0.9495360
		С	-2.4477510	-0.0717500	-0.5537960
		Н	-2.2661570	0.5922540	-1.4130890
		Η	-2.3712800	-1.1154510	-0.8922160
		Н	-3.4856360	0.0864590	-0.2206060
		Na	1.3787610	1.7492390	-0.1300850
31. [Na-DEE] ⁺ , GG	-395.8435765	С	0.0000000	1.2262070	-0.5869090
		Н	0.4894250	1.9931550	0.0363360
		С	0.0000000	-1.2262070	-0.5869090
		Н	-0.4894250	-1.9931550	0.0363360
		0	0.0000000	0.0000000	0.2195180
		С	1.4047700	-1.6546420	-0.9888840
---------------------------------------	--------------	----	------------	------------	------------
		Н	1.9029820	-0.8966760	-1.6120660
		Н	2.0369680	-1.8509540	-0.1084370
		Н	1.3530440	-2.5839000	-1.5782810
		С	-1.4047700	1.6546420	-0.9888840
		Н	-1.9029820	0.8966760	-1.6120660
		Н	-2.0369680	1.8509540	-0.1084370
		Н	-1.3530440	2.5839000	-1.5782810
		Н	0.6460320	1.0662810	-1.4654170
		Н	-0.6460320	-1.0662810	-1.4654170
		Na	0.0000000	0.0000000	2.4190100
32. [Na-MeOH] ⁺	-277.8807457	С	1.4590820	0.7342020	0.0000000
		Η	1.8597920	-0.2878080	0.0000000
		0	0.0000000	0.6236930	0.0000000
		Η	1.8053510	1.2571780	0.9034470
		Η	1.8053510	1.2571780	-0.9034470
		Η	-0.3559830	1.5289110	0.0000000
		Na	-1.2608190	-1.1954740	0.0000000
33. [Na-DCM] ⁺	-1121.93022	С	0.0000000	0.0000000	-1.3336900
		Η	0.9143750	0.0000000	-1.9334420
		Η	-0.9143750	0.0000000	-1.9334420
		Cl	0.0000000	1.4991070	-0.3205170
		Cl	0.0000000	-1.4991070	-0.3205170
		Na	0.0000000	0.0000000	2.0696910
34. [K-H ₂ O] ⁺	-676.2808215	0	0.0000000	0.0000000	-1.6496190
		Κ	0.0000000	0.0000000	0.9313890
		Η	0.0000000	0.7659830	-2.2497170
		Н	0.0000000	-0.7659830	-2.2497170
35. [K-THF]+	-832.3417972	С	0.4996920	1.0886480	-0.8126530
		Η	1.6029170	1.0909770	-0.7638390
		Η	0.1158530	2.0424790	-0.4168330
		С	0.0000000	0.7699880	-2.2217210
		Η	0.6474960	1.2005260	-2.9985670
		Н	-1.0201070	1.1588750	-2.3705200
		С	0.0000000	-0.7699880	-2.2217210
		Η	-0.6474960	-1.2005260	-2.9985670
		Η	1.0201070	-1.1588750	-2.3705200
		С	-0.4996920	-1.0886480	-0.8126530
		Н	-0.1158530	-2.0424790	-0.4168330
		Η	-1.6029170	-1.0909770	-0.7638390
		0	0.0000000	0.0000000	0.0452550
		Κ	0 0000000	0.0000000	2.5868400

36. [K-DEE]+, TT	-833.5515086	С	0.0000000	1.2036640	-1.4039950
		Η	-0.8945020	1.1981250	-2.0535290
		С	0.0000000	-1.2036640	-1.4039950
		Η	-0.8945020	-1.1981250	-2.0535290
		0	0.0000000	0.0000000	-0.5926200
		Η	0.8945020	1.1981250	-2.0535290
		С	0.0000000	2.4224220	-0.4944050
		Η	0.0000000	3.3415660	-1.0990960
		Η	-0.9047570	2.4588210	0.1365730
		Η	0.9047570	2.4588210	0.1365730
		Η	0.8945020	-1.1981250	-2.0535290
		С	0.0000000	-2.4224220	-0.4944050
		Η	0.9047570	-2.4588210	0.1365730
		Η	-0.9047570	-2.4588210	0.1365730
		Η	0.0000000	-3.3415660	-1.0990960
		Κ	0.0000000	0.0000000	1.9677780
37. [K-DEE]+, TG	-833.549501	С	0.5949570	1.4754830	0.1023350
		Η	1.3035550	1.6577310	-0.7232600
		С	1.5455040	-0.7032620	0.5989400
		Η	2.0166250	-0.2045500	1.4652460
		0	0.3499690	0.0486330	0.2301710
		Η	1.0547990	1.8392460	1.0395260
		С	-0.7223450	2.1879050	-0.1630560
		Н	-0.5507180	3.2705920	-0.2577780
		Н	-1.1794190	1.8596480	-1.1129420
		Η	-1.4346590	2.0513470	0.6688930
		Н	1.1740070	-1.6820960	0.9462690
		С	2.5357750	-0.8821390	-0.5469610
		Н	2.0619810	-1.3679420	-1.4143030
		Η	2.9717890	0.0728450	-0.8752730
		Η	3.3677890	-1.5225140	-0.2139650
		Κ	-1.9636240	-0.9911200	-0.0690180
38. [K-DEE] ⁺ , GG	-833.5477122	С	0.0000000	1.2206370	-1.0058420
		Η	0.4736080	1.9929960	-0.3764300
		С	0.0000000	-1.2206370	-1.0058420
		Η	-0.4736080	-1.9929960	-0.3764300
		0	0.0000000	0.0000000	-0.2015350
		С	1.4031710	-1.6428520	-1.4263160
		Η	1.8879080	-0.8830210	-2.0579560
		Η	2.0481270	-1.8291320	-0.5529660
		Η	1.3520320	-2.5744470	-2.0120530
		С	-1.4031710	1.6428520	-1.4263160
		Н	-1.8879080	0.8830210	-2.0579560

		Η	-2.0481270	1.8291320	-0.5529660
		Н	-1.3520320	2.5744470	-2.0120530
		Н	0.6571730	1.0740820	-1.8792700
		Н	-0.6571730	-1.0740820	-1.8792700
		K	0.0000000	0.0000000	2.3450280
39. [K-MeOH] ⁺	-715.5859809	С	1.3311910	1.6927140	0.0000000
		Н	2.0537080	0.8653810	0.0000000
		0	0.0000000	1.0985730	0.0000000
		Н	1.4892130	2.3026840	0.9025830
		Н	1.4892130	2.3026840	-0.9025830
		Н	-0.6355280	1.8346850	0.0000000
		K	-0.6517760	-1.3815950	0.0000000
40. [K-DCM] ⁺	-1559.638056	С	0.0000000	0.0000000	-1.7643150
		Н	0.9130210	0.0000000	-2.3654340
		Н	-0.9130210	0.0000000	-2.3654340
		Cl	0.0000000	1.5018120	-0.7598110
		Cl	0.0000000	-1.5018120	-0.7598110
		K	0.0000000	0.0000000	2.1658070
41. [Me ₄ cyclenH] ⁺	-693.6594398	С	-3.966080	-0.355882	0.486007
		Η	-4.738966	-0.392945	-0.311653
		Η	-4.253193	0.419378	1.212275
		Η	-3.973936	-1.322471	1.013888
		С	0.693760	-1.909222	1.575626
		Η	0.886167	-2.990798	1.534210
		Н	-0.046421	-1.693881	2.356709
		Н	1.614960	-1.350032	1.775731
		С	3.953272	0.349036	0.499060
		Η	4.245455	-0.431888	1.218421
		Η	3.940462	1.308546	1.037480
		Η	4.731660	0.407214	-0.291334
		С	-0.675007	1.950235	1.536456
		Н	-0.887776	3.036992	1.499747
		Н	0.062647	1.769134	2.331555
		Н	-1.596075	1.406664	1.785443
		С	-2.112010	-1.174464	-0.863838
		Η	-1.565068	-0.778670	-1.736060
		Η	-2.931448	-1.791765	-1.283402
		С	-1.206959	-2.082729	-0.027581
		Η	-1.015695	-3.051552	-0.516328
		Η	-1.688528	-2.274706	0.941471
		С	1.088240	-1.711128	-0.892988
		Η	0.646894	-1.211891	-1.768174
		Н	1.076009	-2.794853	-1.088921

С	2.533239	-1.254154	-0.652891
Н	3.062265	-1.335041	-1.630854
Н	3.034765	-1.967717	0.021627
С	2.104199	1.175605	-0.866182
Н	1.563819	0.780583	-1.743176
Н	2.937703	1.777685	-1.278116
С	1.182306	2.076924	-0.039217
Н	1.034861	3.053278	-0.543744
Н	1.678228	2.283654	0.921731
С	-1.072759	1.718823	-0.871465
Н	-0.655542	1.245949	-1.777997
Н	-1.106194	2.808285	-1.084435
С	-2.519448	1.256066	-0.635191
Н	-3.066159	1.342965	-1.601342
Н	-3.014205	1.955569	0.057395
Ν	-2.620060	-0.076663	-0.032518
Ν	2.613679	0.064980	-0.035531
Ν	-0.136500	1.440505	0.253064
Н	0.014376	-0.348068	0.327806
Ν	0.141797	-1.442291	0.262594
Κ	0.784205	-0.098686	-0.140566
Н	-1.536208	-0.086526	1.067165
В	-2.301625	-0.008329	0.076393
Ν	3.030588	-1.954204	-0.419959
Ν	1.978776	-1.008195	2.363114
Ν	2.145834	1.943044	1.369068
Ν	3.220182	0.986825	-1.407002
С	3.181477	-2.660307	0.868933
Н	2.328976	-3.353148	0.959893
Н	4.096770	-3.298407	0.875438
С	3.228747	-1.747797	2.105287
Н	3.505233	-2.377545	2.983159
Н	4.047453	-1.020283	1.991442
С	2.206515	0.190712	3.196069
Н	1.220853	0.529335	3.553658
Н	2.795264	-0.058697	4.110290
С	2.914710	1.351085	2.479129
Н	3.161574	2.123601	3.245128
Н	3.880400	0.998020	2.085233
С	3.007804	2.707273	0.446017
Н	3.648424	3.435577	0.997871
Н	2.343194	3.310846	-0.193101
С	3.926655	1.848729	-0.438404
Н	4.630227	2.534478	-0.965811
Н	4.555814	1.209830	0.200294

42. [K(Me₄cyclen)][HBPh₃] -2013.860432

С	4.065405	-0.139644	-1.853212
Н	5.073578	0.210685	-2.178185
Н	3.592531	-0.567741	-2.752345
С	4.265655	-1.248068	-0.806985
Η	5.022150	-1.962646	-1.209362
Н	4.716245	-0.814263	0.098962
С	2.622082	-2.905936	-1.466165
Н	3.371519	-3.715621	-1.619377
Η	2.486274	-2.385380	-2.425837
Η	1.655545	-3.362385	-1.203185
С	0.982289	-1.877792	3.009824
Η	1.302296	-2.206389	4.024772
Η	0.807766	-2.777865	2.401976
Н	0.022581	-1.345779	3.094847
С	1.068090	2.807356	1.881768
Н	0.389226	2.230978	2.526924
Н	0.466441	3.195299	1.046209
Н	1.463371	3.666013	2.470991
С	2.772673	1.774237	-2.566714
Η	3.622226	2.241241	-3.115626
Η	2.083858	2.570516	-2.248783
Η	2.222122	1.127183	-3.266671
С	-1.934106	1.398478	-0.691180
С	-1.307715	1.508405	-1.956190
Н	-1.101977	0.597230	-2.531907
С	-0.972688	2.747922	-2.533823
Н	-0.514201	2.780120	-3.528182
С	-1.254113	3.939468	-1.856192
Н	-1.011745	4.907018	-2.305478
С	-1.881765	3.871351	-0.600509
Η	-2.128045	4.793877	-0.064146
С	-2.210302	2.630417	-0.041819
Η	-2.716368	2.601864	0.929223
С	-2.076336	-1.369762	-0.810432
С	-1.449049	-2.511875	-0.255920
Η	-1.101565	-2.458954	0.783929
С	-1.306100	-3.720029	-0.958998
Η	-0.839932	-4.585984	-0.475718
С	-1.787016	-3.827268	-2.270498
Η	-1.685255	-4.764169	-2.825789
С	-2.424932	-2.720960	-2.851012
Н	-2.826445	-2.795981	-3.866887
С	-2.566764	-1.526374	-2.131190
Н	-3.096954	-0.691702	-2.601900
С	-3.823583	0.003960	0.672027
С	-4.921069	0.493386	-0.073350

	Н	-4.741214	0.925238	-1.064336
	С	-6.233571	0.457861	0.417809
	Н	-7.055728	0.847545	-0.191585
	С	-6.496042	-0.072473	1.688603
	Н	-7.518199	-0.100207	2.077863
	С	-5.430136	-0.562094	2.455418
	Н	-5.618574	-0.974202	3.452575
	С	-4.123026	-0.520701	1.949021
	Н	-3.301663	-0.905622	2.564743
-720.6180429	Н	-0.013985	-0.005762	-2.092210
	В	-0.023108	-0.005625	-0.850743
	С	-1.521614	-0.480276	-0.386623
	С	-1.787071	-1.611256	0.419321
	Н	-0.941953	-2.207968	0.779937
	С	-3.090952	-2.000077	0.770483
	Н	-3.245061	-2.887325	1.396382
	С	-4.193926	-1.260310	0.325327
	Н	-5.212861	-1.558306	0.595946
	С	-3.969127	-0.129447	-0.476397
	Н	-4.819420	0.462332	-0.836733
	С	-2.662791	0.242262	-0.819003
	Н	-2.510023	1.126980	-1.448448
	С	1.143988	-1.044808	-0.355402
	С	1.637148	-2.064669	-1.204091
	Η	1.230786	-2.132625	-2.220294
	С	2.622473	-2.977274	-0.796557
	Η	2.976507	-3.748664	-1.492341
	С	3.159361	-2.903252	0.497629
	Η	3.930607	-3.610611	0.822195
	С	2.694158	-1.905407	1.368327
	Η	3.103825	-1.830282	2.383417
	С	1.711093	-0.999606	0.942038
	Η	1.375027	-0.218914	1.635572
	С	0.331724	1.520551	-0.363350
	С	-0.270876	2.161765	0.744786
	Η	-1.059006	1.633111	1.292843
	С	0.091680	3.454471	1.158729
	Н	-0.405128	3.910242	2.023867
	С	1.083084	4.164948	0.469257
	Н	1.368425	5.174422	0.784945
	С	1.701434	3.561184	-0.637591
	Н	2.476844	4.103329	-1.192523
	С	1.327187	2.271379	-1.035959
	Н	1.819094	1.817094	-1.904383

43. [HBPh₃]⁻

Κ	0.0000000	0.0000000	1.0504320
Ν	-1.9853970	-1.0084690	-0.8551030
Ν	-1.0084690	1.9853970	-0.8551030
Ν	1.9853970	1.0084690	-0.8551030
Ν	1.0084690	-1.9853970	-0.8551030
С	2.2700400	-1.4545130	-1.4202470
Н	3.0449920	-1.5417970	-0.6418020
Н	2.6204560	-2.0854650	-2.2698140
С	2.2126350	0.0000000	-1.9134410
Н	3.1573040	0.2069820	-2.4654980
Н	1.4109900	0.0981220	-2.6602680
С	1.4545130	2.2700400	-1.4202470
Н	1.5417970	3.0449920	-0.6418020
Н	2.0854650	2.6204560	-2.2698140
С	0.0000000	2.2126350	-1.9134410
Н	-0.2069820	3.1573040	-2.4654980
Н	-0.0981220	1.4109900	-2.6602680
С	-2.2700400	1.4545130	-1.4202470
Н	-3.0449920	1.5417970	-0.6418020
Н	-2.6204560	2.0854650	-2.2698140
С	-2.2126350	0.0000000	-1.9134410
Н	-3.1573040	-0.2069820	-2.4654980
Н	-1.4109900	-0.0981220	-2.6602680
С	-1.4545130	-2.2700400	-1.4202470
Н	-1.5417970	-3.0449920	-0.6418020
Н	-2.0854650	-2.6204560	-2.2698140
С	0.0000000	-2.2126350	-1.9134410
Н	0.2069820	-3.1573040	-2.4654980
Н	0.0981220	-1.4109900	-2.6602680
С	-1.8378220	3.0668570	1.2761220
Н	-2.1245590	4.0639630	1.6576170
Η	-2.7425100	2.4298640	1.2743800
С	-1.2743490	3.2473580	-0.1279360
Η	-1.9636620	3.9042440	-0.7059990
Н	-0.3267350	3.7989290	-0.0262670
С	-3.2473580	-1.2743490	-0.1279360
Η	-3.7989290	-0.3267350	-0.0262670
Η	-3.9042440	-1.9636620	-0.7059990
С	-3.0668570	-1.8378220	1.2761220
Η	-4.0639630	-2.1245590	1.6576170
Η	-2.4298640	-2.7425100	1.2743800
С	1.8378220	-3.0668570	1.2761220
Н	2.7425100	-2.4298640	1.2743800
Н	2.1245590	-4.0639630	1.6576170
С	1.2743490	-3.2473580	-0.1279360
Н	1.9636620	-3.9042440	-0.7059990

-1751.3986291

44. K+**-1c**

		Η	0.3267350	-3.7989290	-0.0262670
		С	3.0668570	1.8378220	1.2761220
		Η	2.4298640	2.7425100	1.2743800
		Η	4.0639630	2.1245590	1.6576170
		С	3.2473580	1.2743490	-0.1279360
		Н	3.9042440	1.9636620	-0.7059990
		Н	3.7989290	0.3267350	-0.0262670
		Ο	2.4813970	0.8154750	2.1144630
		Η	2.5397020	1.1326300	3.0311190
		0	0.8154750	-2.4813970	2.1144630
		Н	1.1326300	-2.5397020	3.0311190
		0	-2.4813970	-0.8154750	2.1144630
		Н	-2.5397020	-1.1326300	3.0311190
		Ο	-0.8154750	2.4813970	2.1144630
		Η	-1.1326300	2.5397020	3.0311190
1d	-3426.5971897	K	0.0000000	0.0000000	0.3427130
		Ο	-1.3684550	2.0351250	-1.0895960
		Ο	-1.6984360	-1.8734650	-0.9388590
		Ο	1.3684550	-2.0351250	-1.0895960
		Ο	1.6984360	1.8734650	-0.9388590
		Ο	-0.6702750	5.7676690	1.5761160
		Ο	-5.5901930	-0.4191770	1.1459600
		Ο	0.6702750	-5.7676690	1.5761160
		Ο	5.5901930	0.4191770	1.1459600
		Ν	-0.9173030	2.0273500	2.3806310
		Ν	-2.0160200	-0.9308740	2.3838610
		Ν	0.9173030	-2.0273500	2.3806310
		Ν	2.0160200	0.9308740	2.3838610
		Ν	-1.0886140	3.2393690	-0.7408430
		Ν	-0.7373000	5.0172480	0.5539810
		Ν	-2.8906350	-1.3985270	-0.7820100
		Ν	-4.7484890	-0.6986330	0.2330850
		Ν	1.0886140	-3.2393690	-0.7408430
		Ν	0.7373000	-5.0172480	0.5539810
		Ν	2.8906350	1.3985270	-0.7820100
		Ν	4.7484890	0.6986330	0.2330850
		С	-1.7333410	1.3707500	3.4287320
		С	-2.6856010	0.2714840	2.9372740
		С	-1.3652760	-1.7261160	3.4511460
		С	-0.2714040	-2.6891320	2.9687470
		С	1.7333410	-1.3707500	3.4287320
		С	2.6856010	-0.2714840	2.9372740
		С	1.3652760	1.7261160	3.4511460
		С	0.2714040	2.6891320	2.9687470
		С	-1.7669090	3.0296920	1.6928460

45. K+-1d

С	-1.1499250	3.7251600	0.5260990
С	-0.8667470	4.3647580	-1.7443030
С	-0.2084500	5.4521930	-0.8167150
С	-2.2710730	4.7578340	-2.2483990
С	0.0000000	3.8775610	-2.9033570
С	-0.6324950	6.8975750	-1.0755400
С	1.3242530	5.3423970	-0.7222010
С	-3.0181140	-1.7873440	1.7046000
С	-3.5268080	-1.2564750	0.4077200
С	-3.8274970	-1.1141330	-1.9482300
С	-4.9655290	-0.2929450	-1.2269170
С	-3.0704180	-0.3602240	-3.0437130
С	-4.2897810	-2.4912530	-2.4653840
С	-4.7656700	1.2334320	-1.2724220
С	-6.4002290	-0.6490730	-1.6236430
С	1.7669090	-3.0296920	1.6928460
С	1.1499250	-3.7251600	0.5260990
С	0.8667470	-4.3647580	-1.7443030
С	0.2084500	-5.4521930	-0.8167150
С	0.0000000	-3.8775610	-2.9033570
С	2.2710730	-4.7578340	-2.2483990
С	-1.3242530	-5.3423970	-0.7222010
С	0.6324950	-6.8975750	-1.0755400
С	3.0181140	1.7873440	1.7046000
С	3.5268080	1.2564750	0.4077200
С	3.8274970	1.1141330	-1.9482300
С	4.9655290	0.2929450	-1.2269170
С	3.0704180	0.3602240	-3.0437130
С	4.2897810	2.4912530	-2.4653840
С	4.7656700	-1.2334320	-1.2724220
С	6.4002290	0.6490730	-1.6236430
Н	-2.3436170	2.1219150	3.9796840
Н	-1.0463630	0.9483750	4.1759530
Н	-3.3510050	-0.0019280	3.7871390
Н	-3.3574110	0.6677140	2.1590150
Н	-0.9385480	-1.0263830	4.1839790
Н	-2.1172420	-2.3227220	4.0153850
Н	-0.6822590	-3.3673320	2.2044260
Н	0.0135930	-3.3402510	3.8251170
Н	2.3436170	-2.1219150	3.9796840
Н	1.0463630	-0.9483750	4.1759530
Н	3.3574110	-0.6677140	2.1590150
Н	3.3510050	0.0019280	3.7871390
Н	2.1172420	2.3227220	4.0153850
Н	0.9385480	1.0263830	4.1839790
Н	0.6822590	3.3673320	2.2044260

Η	-0.0135930	3.3402510	3.8251170
Н	-2.6652690	2.5111460	1.3217180
Н	-2.0882360	3.8330920	2.3917050
Н	-2.7448310	3.8747050	-2.7014260
Н	-2.9156570	5.1231390	-1.4344090
Н	-2.1995480	5.5423450	-3.0161660
Н	-0.5540670	3.1269490	-3.4847900
Н	0.9229590	3.4079940	-2.5391620
Н	0.2387820	4.7200050	-3.5708650
Н	-0.2521640	7.2315480	-2.0529780
Н	-1.7225080	7.0289450	-1.0554250
Н	-0.2012440	7.5409460	-0.2959630
Н	1.6440550	4.2990830	-0.5745260
Н	1.6666320	5.9587360	0.1224880
Н	1.7924550	5.7239440	-1.6417410
Н	-2.5420580	-2.7553340	1.4837160
Н	-3.9045980	-1.9686310	2.3497790
Н	-2.6264300	0.5746250	-2.6760990
Н	-3.7501380	-0.1373130	-3.8805810
Н	-2.2579330	-0.9964090	-3.4225330
Н	-3.4105070	-3.0589230	-2.8029530
Н	-4.9711580	-2.3740740	-3.3208810
Н	-4.8028420	-3.0741500	-1.6857110
Н	-4.9962920	1.6173820	-2.2776060
Η	-5.4632850	1.6953310	-0.5577320
Н	-3.7341800	1.5214750	-1.0163720
Н	-6.5895620	-0.3451710	-2.6642600
Н	-6.6133080	-1.7214400	-1.5225970
Н	-7.0941140	-0.1035080	-0.9690370
Н	2.6652690	-2.5111460	1.3217180
Н	2.0882360	-3.8330920	2.3917050
Н	-0.9229590	-3.4079940	-2.5391620
Η	0.5540670	-3.1269490	-3.4847900
Η	-0.2387820	-4.7200050	-3.5708650
Η	2.9156570	-5.1231390	-1.4344090
Η	2.7448310	-3.8747050	-2.7014260
Н	2.1995480	-5.5423450	-3.0161660
Η	-1.6666320	-5.9587360	0.1224880
Η	-1.7924550	-5.7239440	-1.6417410
Н	-1.6440550	-4.2990830	-0.5745260
Η	0.2012440	-7.5409460	-0.2959630
Η	0.2521640	-7.2315480	-2.0529780
Η	1.7225080	-7.0289450	-1.0554250
Η	3.9045980	1.9686310	2.3497790
Η	2.5420580	2.7553340	1.4837160
Н	2.6264300	-0.5746250	-2.6760990

Η	3.7501380	0.1373130	-3.8805810
Н	2.2579330	0.9964090	-3.4225330
Η	3.4105070	3.0589230	-2.8029530
Η	4.8028420	3.0741500	-1.6857110
Η	4.9711580	2.3740740	-3.3208810
Η	3.7341800	-1.5214750	-1.0163720
Η	4.9962920	-1.6173820	-2.2776060
Η	5.4632850	-1.6953310	-0.5577320
Η	6.6133080	1.7214400	-1.5225970
Η	6.5895620	0.3451710	-2.6642600
Η	7.0941140	0.1035080	-0.9690370

Table S21: Cartesian coordinates (in Å) and total electronic energies (in Hartree) of all stationary points obtained using the B3LYP/6-311G(d,p) method.

Species	Total Electronic		Atom	Coordinates	
	Energy (Hartree)				
1. Li-H ₂ O-2a	-777.197067	С	0.000000	3.181469	0.874712
		Н	0.059392	4.170750	0.396841
		Н	0.753790	3.139537	1.663437
		Н	-0.981964	3.091807	1.341223
		С	-3.168032	0.005177	0.880679
		Н	-4.160938	0.069063	0.410890
		Н	-3.110705	0.754857	1.671148
		Н	-3.076015	-0.974880	1.349162
		С	0.000000	-3.181469	0.874712
		Н	-0.753790	-3.139537	1.663437
		Н	0.981964	-3.091807	1.341223
		Η	-0.059392	-4.170750	0.396841
		С	3.168032	-0.005177	0.880679
		Η	4.160938	-0.069063	0.410890
		Η	3.110705	-0.754857	1.671148
		Η	3.076015	0.974880	1.349162
		С	-0.805031	2.095019	-1.143983
		Η	-0.449091	1.473595	-1.968587
		Η	-0.935282	3.107767	-1.556931
		С	-2.161418	1.580606	-0.659712
		Н	-2.881033	1.629407	-1.490705
		Η	-2.548825	2.246111	0.113592
		С	-2.097417	-0.811034	-1.142437
		Н	-1.480069	-0.462315	-1.973359
		Н	-3.112182	-0.944857	-1.549641
		С	-1.583772	-2.164994	-0.649813
		Н	-1.635148	-2.890671	-1.475293
		Н	-2.248078	-2.544541	0.128223
		С	0.805031	-2.095019	-1.143983
		Н	0.449091	-1.473595	-1.968587
		Н	0.935282	-3.107767	-1.556931
		С	2.161418	-1.580606	-0.659712
		Н	2.881033	-1.629407	-1.490705
		Н	2.548825	-2.246111	0.113592
		С	2.097417	0.811034	-1.142437
		Н	1.480069	0.462315	-1.973359
		Н	3.112182	0.944857	-1.549641
		С	1.583772	2.164994	-0.649813
		Н	1.635148	2.890671	-1.475293
		Н	2.248078	2.544541	0.128223

Ν	0.221521	2.084082	-0.080890
Ν	-2.079582	0.221242	-0.086757
Ν	-0.221521	-2.084082	-0.080890
Ν	2.079582	-0.221242	-0.086757
0	0.000000	0.000000	2.701290
Li	0.000000	0.000000	0.714300
Н	-0.052299	0.767219	3.280241
Н	0.052299	-0.767219	3.280241
С	-3.128677	-0.018505	0.130705
Н	-4.126574	0.079878	-0.322343
Н	-3.040585	0.708115	0.939728
Н	-3.053719	-1.014327	0.568010
С	0.000000	-3.314177	-0.015712
Н	-0.053744	-4.257947	-0.579444
Н	-0.752410	-3.343794	0.773126
Н	0.979310	-3.258785	0.460434
С	3.128677	0.018505	0.130705
Н	3.040585	-0.708115	0.939728
Н	3.053719	1.014327	0.568010
Н	4.126574	-0.079878	-0.322343
С	0.000000	3.314177	-0.015712
Н	0.053744	4.257947	-0.579444
Н	0.752410	3.343794	0.773126
Н	-0.979310	3.258785	0.460434
С	-2.090187	-0.824205	-1.912474
Н	-1.482806	-0.470860	-2.748099
Н	-3.111994	-0.943134	-2.306710
С	-1.585306	-2.190831	-1.448690
Н	-1.644971	-2.895464	-2.292865
Н	-2.253031	-2.584355	-0.680191
С	0.803797	-2.075191	-1.934219
Н	0.441825	-1.420307	-2.729322
Η	0.956007	-3.063203	-2.396995
С	2.145596	-1.559723	-1.415633
Η	2.888100	-1.605511	-2.226540
Η	2.512403	-2.224023	-0.631407
С	2.090187	0.824205	-1.912474
Η	1.482806	0.470860	-2.748099
Η	3.111994	0.943134	-2.306710
С	1.585306	2.190831	-1.448690
Н	1.644971	2.895464	-2.292865
Η	2.253031	2.584355	-0.680191
С	-0.803797	2.075191	-1.934219
Н	-0.441825	1.420307	-2.729322
Н	-0.956007	3.063203	-2.396995

2. Li-THF-2a

-933.2600714

		С	-2.145596	1.559723	-1.415633
		Η	-2.888100	1.605511	-2.226540
		Н	-2.512403	2.224023	-0.631407
		С	0.480126	1.087087	2.869333
		Η	-0.238184	1.910774	2.816175
		Η	1.439202	1.425590	2.474707
		С	0.569946	0.513584	4.280399
		Η	0.457752	1.281991	5.046137
		Η	1.532313	0.018121	4.434494
		С	-0.569946	-0.513584	4.280399
		Η	-0.457752	-1.281991	5.046137
		Η	-1.532313	-0.018121	4.434494
		С	-0.480126	-1.087087	2.869333
		Η	-1.439202	-1.425590	2.474707
		Η	0.238184	-1.910774	2.816175
		Ν	-2.049891	0.198300	-0.847353
		Ν	-0.224763	-2.141369	-0.876553
		Ν	2.049891	-0.198300	-0.847353
		Ν	0.224763	2.141369	-0.876553
		0	0.000000	0.000000	2.028349
		Li	0.000000	0.000000	0.021860
E-2a	-934.4695717	С	0.000000	3.373740	-0.037373
		Η	0.119140	4.299166	-0.621093
		Η	0.717973	3.390626	0.783930
		Η	-1.002001	3.377349	0.392813
		С	-3.115479	-0.054493	0.155740
		Η	-4.110513	-0.017756	-0.312380
		Н	-3.077489	0.698156	0.944148
		Η	-2.993796	-1.030439	0.625418
		С	0.000000	-3.373740	-0.037373
		Н	-0.717973	-3.390626	0.783930
		Η	1.002001	-3.377349	0.392813
		Η	-0.119140	-4.299166	-0.621093
		С	3.115479	0.054493	0.155740
		Η	4.110513	0.017756	-0.312380
		Η	3.077489	-0.698156	0.944148
		Н	2.993796	1.030439	0.625418
		С	-0.824880	2.085111	-1.913029
		Н	-0.458835	1.431894	-2.707261
		Н	-0.994612	3.067802	-2.380439
		С	-2.155207	1.551139	-1.382553
		Н	-2.906181	1.587410	-2.186082
		Н	-2.523743	2.209712	-0.594041
		С	-2.062548	-0.826498	-1.889548
		Η	-1.446108	-0.467543	-2.716004

3. Li-DEE-2a

	Н	-3.080522	-0.940143	-2.295186
	С	-1.568527	-2.198838	-1.434359
	Н	-1.633470	-2.895863	-2.284710
	Н	-2.240220	-2.592835	-0.669640
	С	0.824880	-2.085111	-1.913029
	Н	0.458835	-1.431894	-2.707261
	Н	0.994612	-3.067802	-2.380439
	С	2.155207	-1.551139	-1.382553
	Н	2.906181	-1.587410	-2.186082
	Н	2.523743	-2.209712	-0.594041
	С	2.062548	0.826498	-1.889548
	Η	1.446108	0.467543	-2.716004
	Η	3.080522	0.940143	-2.295186
	С	1.568527	2.198838	-1.434359
	Η	1.633470	2.895863	-2.284710
	Η	2.240220	2.592835	-0.669640
	С	0.536211	-1.097248	2.850895
	Η	0.982255	-1.758311	2.107939
	С	-0.536211	1.097248	2.850895
	Η	-0.982255	1.758311	2.107939
	Ν	0.208004	2.171285	-0.860855
	Ν	-2.036047	0.189498	-0.816766
	Ν	-0.208004	-2.171285	-0.860855
	Ν	2.036047	-0.189498	-0.816766
	0	0.000000	0.000000	2.080468
	С	0.504172	1.850618	3.668140
	Η	0.913977	1.249222	4.481713
	Н	1.331050	2.189928	3.039440
	Н	0.037908	2.729995	4.120204
	С	-0.504172	-1.850618	3.668140
	Н	-0.913977	-1.249222	4.481713
	Н	-1.331050	-2.189928	3.039440
	Н	-0.037908	-2.729995	4.120204
	Η	1.344262	-0.731254	3.491315
	Η	-1.344262	0.731254	3.491315
	Li	0.000000	0.000000	0.062612
45468	С	-0.076611	-3.159164	0.500794
	Н	-0.105976	-4.127138	-0.021479
	Η	-0.891853	-3.133277	1.225276
	Н	0.859482	-3.098511	1.055859
	С	3.182021	-0.096431	0.893516
	Н	4.198638	-0.164205	0.477717
	Н	3.068249	-0.887422	1.637973
	Н	3.094402	0.865127	1.402134
	С	0.008419	3.113708	0.868270

4. Li-MeOH-2a

-816.5045468

	Н	0.690083	2.996097	1.711925
	Н	-1.007022	3.001203	1.248252
	Н	0.117436	4.134643	0.472716
	С	-3.255959	0.060578	0.356188
	Н	-4.181064	0.193207	-0.224695
	Н	-3.278135	0.753738	1.198885
	Н	-3.252819	-0.954051	0.756108
	С	0.908476	-2.009893	-1.399824
	Н	0.638599	-1.339624	-2.218864
	Н	1.049640	-3.004600	-1.851691
	С	2.233120	-1.560933	-0.781658
	Н	3.015225	-1.582933	-1.555546
	Н	2.541393	-2.279306	-0.020242
	С	2.238019	0.856574	-1.131052
	Н	1.672633	0.562022	-2.017722
	Н	3.278375	0.999789	-1.463271
	С	1.700595	2.185413	-0.597376
	Н	1.828049	2.960708	-1.367741
	Н	2.301723	2.505316	0.255366
	С	-0.638113	2.195948	-1.286848
	Н	-0.231047	1.617159	-2.118720
	Н	-0.710467	3.235988	-1.642670
	С	-2.042670	1.694579	-0.949321
	Н	-2.686562	1.811930	-1.834089
	Н	-2.478337	2.325502	-0.172874
	С	-1.964329	-0.666129	-1.567431
	Н	-1.259249	-0.277251	-2.305171
	Н	-2.931636	-0.758901	-2.085785
	С	-1.512552	-2.052913	-1.108330
	Н	-1.504611	-2.733516	-1.972905
	Н	-2.243532	-2.461471	-0.408594
	С	-0.897105	-0.444148	3.548143
	Н	-1.855316	-0.614242	3.061415
	Ν	-0.201824	-2.022392	-0.426308
	Ν	2.142740	-0.233311	-0.138487
	Ν	0.296162	2.088466	-0.148527
	Ν	-2.050548	0.301569	-0.454108
	0	0.053636	-0.148692	2.507400
	Н	-0.993819	0.395486	4.240609
	Н	-0.610409	-1.344736	4.096665
	Н	0.913182	0.008639	2.909774
	Li	-0.026641	-0.019763	0.524591
-1660.492851	С	1.137776	-0.567162	-3.034179
	Н	1.861374	-0.445393	-3.853219
	Н	0.162598	-0.218953	-3.377455

5. Li-DCM-2a

Н	1.047476	-1.630347	-2.812800
С	1.210081	-3.013220	0.738147
Η	2.011746	-3.685563	1.076862
Η	0.780505	-3.423554	-0.176734
Н	0.426877	-3.005294	1.496078
С	-1.084263	0.245477	2.786482
Н	-1.476477	-0.768137	2.695297
Н	-1.802104	0.918386	2.318060
Н	-1.016162	0.501084	3.853817
С	-1.077376	2.703540	-0.967533
Н	-1.035918	3.800893	-1.034315
Н	-2.014246	2.418701	-0.488411
Н	-1.088827	2.301575	-1.980641
С	2.828637	-0.305205	-1.303593
Н	3.215918	0.439737	-0.604184
Н	3.574919	-0.388425	-2.108607
С	2.706502	-1.658610	-0.601674
Н	3.697542	-1.965212	-0.236008
Н	2.400774	-2.417372	-1.323549
С	2.265071	-1.059613	1.725744
Н	2.877158	-0.197214	1.451037
Н	2.941176	-1.769254	2.226785
С	1.178081	-0.627636	2.710911
Н	1.651012	-0.217378	3.614854
Н	0.611052	-1.501507	3.034664
С	0.752397	1.714172	2.158775
Н	1.817197	1.681325	1.915578
Н	0.681949	2.130705	3.175289
С	0.028503	2.649540	1.188667
Н	0.461067	3.657651	1.268663
Н	-1.017448	2.742510	1.484540
С	1.341756	2.480067	-0.864450
Н	2.148246	2.315711	-0.146006
Н	1.385369	3.545353	-1.138815
С	1.585467	1.633176	-2.114509
Н	2.545081	1.922354	-2.566828
Н	0.819890	1.853327	-2.859670
С	-3.586042	-1.375141	-1.005080
N	1.534660	0.181810	-1.827888
N	1 705061	-1 646323	0 488232
N	0 224776	0 333464	2 112371
N	0.058837	2.153810	-0.205419
Н	-4.131414	-2.246744	-0.661551
Н	-3 744273	-1 175120	-2.058521
Cl	-1 825778	-1 753682	-0 792372
Cl	- <u>4</u> 117/78	0.037685	-0.063812
	1.11/7/0	0.057005	0.000012

Li	0.286803	-0.025841	-0.035465
С	0 000000	-3 364722	0 660490
Н	-0.093752	-4 297012	0.082428
Н	-0.733505	-3.390101	1.469118
Н	0.993994	-3.346457	1.110093
С	3.347798	-0.003371	0.675571
Н	4.286575	-0.090283	0.107021
Н	3.364872	-0.740679	1.480505
Н	3.320171	0.986290	1.133571
С	0.000000	3.364722	0.660490
Н	0.733505	3.390101	1.469118
Н	-0.993994	3.346457	1.110093
Н	0.093752	4.297012	0.082428
С	-3.347798	0.003371	0.675571
Н	-4.286575	0.090283	0.107021
Н	-3.364872	0.740679	1.480505
Н	-3.320171	-0.986290	1.133571
С	0.813346	-2.075807	-1.227912
Н	0.442770	-1.410967	-2.009501
Н	0.961975	-3.055092	-1.710854
С	2.178115	-1.577787	-0.737802
Н	2.891488	-1.653355	-1.574259
Н	2.551557	-2.250061	0.037496
С	2.078542	0.817285	-1.223484
Н	1.419638	0.451353	-2.012337
Н	3.061757	0.967520	-1.698071
С	1.580261	2.181161	-0.731223
Н	1.661304	2.896870	-1.565205
Н	2.249612	2.550170	0.048678
С	-0.813346	2.075807	-1.227912
Н	-0.442770	1.410967	-2.009501
Н	-0.961975	3.055092	-1.710854
С	-2.178115	1.577787	-0.737802
Н	-2.891488	1.653355	-1.574259
Η	-2.551557	2.250061	0.037496
С	-2.078542	-0.817285	-1.223484
Н	-1.419638	-0.451353	-2.012337
Η	-3.061757	-0.967520	-1.698071
С	-1.580261	-2.181161	-0.731223
Η	-1.661304	-2.896870	-1.565205
Н	-2.249612	-2.550170	0.048678
Ν	-0.212952	-2.168442	-0.169214
Ν	2.161634	-0.213718	-0.169412
Ν	0.212952	2.168442	-0.169214
Ν	-2.161634	0.213718	-0.169412

6. Na-H₂O-2a

-931.9551806

0	0.000000	0.000000	3.343390
Na	0.000000	0.000000	1.032100
Н	0.115109	-0.757037	3.927750
Н	-0.115109	0.757037	3.927750
С	0.000000	3.355569	-0.175823
Н	0.101545	4.290910	-0.747972
Н	0.727588	3.370802	0.638088
Н	-0.996626	3.339509	0.267831
С	-3.360304	0.005058	-0.180661
Н	-4.293721	0.092480	-0.758235
Н	-3.386063	0.742465	0.624090
Н	-3.337340	-0.985172	0.276425
С	0.000000	-3.355569	-0.175823
Н	-0.727588	-3.370802	0.638088
Н	0.996626	-3.339509	0.267831
Н	-0.101545	-4.290910	-0.747972
С	3.360304	-0.005058	-0.180661
Н	4.293721	-0.092480	-0.758235
Н	3.386063	-0.742465	0.624090
Н	3.337340	0.985172	0.276425
С	-0.814453	2.077058	-2.070458
Н	-0.445301	1.414473	-2.854611
Н	-0.961982	3.058317	-2.550202
С	-2.179986	1.580049	-1.582018
Н	-2.892302	1.656216	-2.419554
Н	-2.553717	2.252882	-0.807290
С	-2.075036	-0.814113	-2.067593
Н	-1.411414	-0.447204	-2.851931
Н	-3.055228	-0.964598	-2.548565
С	-1.578097	-2.177185	-1.572804
Н	-1.660138	-2.894734	-2.405334
Н	-2.247307	-2.544106	-0.791807
С	0.814453	-2.077058	-2.070458
Н	0.445301	-1.414473	-2.854611
Н	0.961982	-3.058317	-2.550202
С	2.179986	-1.580049	-1.582018
Н	2.892302	-1.656216	-2.419554
Н	2.553717	-2.252882	-0.807290
С	2.075036	0.814113	-2.067593
Н	1.411414	0.447204	-2.851931
Н	3.055228	0.964598	-2.548565
С	1.578097	2.177185	-1.572804
Н	1.660138	2.894734	-2.405334
Н	2.247307	2.544106	-0.791807
С	0.936230	-0.732446	3.368619

-1088.019999

7. Na-THF-2a

	Н	1.912548	-0.239521	3.313017
	Η	1.027121	-1.747038	2.975101
	С	0.361309	-0.677380	4.781759
	Η	1.135360	-0.751027	5.546484
	Η	-0.350858	-1.491793	4.939544
	С	-0.361309	0.677380	4.781759
	Η	-1.135360	0.751027	5.546484
	Н	0.350858	1.491793	4.939544
	С	-0.936230	0.732446	3.368619
	Η	-1.027121	1.747038	2.975101
	Н	-1.912548	0.239521	3.313017
	Ν	0.211154	2.163776	-1.011825
	Ν	-2.166249	0.216195	-1.013600
	Ν	-0.211154	-2.163776	-1.011825
	Ν	2.166249	-0.216195	-1.013600
	0	0.000000	0.000000	2.530052
	Na	0.000000	0.000000	0.219377
-1089.231096	С	-0.147487	2.972712	1.614101
	Н	-0.739000	3.829200	1.973211
	Н	0.661345	3.354835	0.988220
	Н	0.301602	2.487105	2.481753
	С	-0.110920	-1.594383	2.941746
	Н	-0.677639	-1.959380	3.812402
	Н	0.699437	-0.957765	3.301925
	Н	0.339867	-2.455328	2.446651
	С	-0.159794	-2.972635	-1.614816
	Н	0.649862	-3.356902	-0.991073
	Н	0.287540	-2.487544	-2.483460
	Н	-0.754281	-3.827691	-1.972713
	С	-0.118723	1.593979	-2.944109
	Н	-0.688886	1.959868	-3.812289
	Н	0.688680	0.955870	-3.307688
	Н	0.336153	2.454446	-2.451573
	С	-2.017780	1.432881	1.702621
	Н	-2.793280	1.019112	1.056350
	Н	-2.509772	2.218183	2.298979
	С	-1.522207	0.347684	2.665230
	Н	-2.355190	0.072665	3.331890
	Н	-0.744393	0.762302	3.310837
	С	-2.013364	-1.709852	1.440278
	Н	-2.803688	-1.073642	1.039015
	Н	-2.484851	-2.309971	2.235477
	C	-1.528084	-2.672043	0.350310
	н	-2.366038	-3.335999	0.082355
	Н	-0.749512	-3.319821	0.759004

8. Na-DEE-2a

С	-2.027390	-1.428858	-1.696553
Н	-2.799150	-1.012617	-1.047753
Н	-2.523689	-2.212969	-2.290948
С	-1.532540	-0.345085	-2.661041
Н	-2.367696	-0.068276	-3.324717
Н	-0.758679	-0.761718	-3.309371
С	-2.014129	1.713370	-1.434237
Н	-2.803981	1.078780	-1.029810
Н	-2.487809	2.314310	-2.227476
С	-1.522675	2.674698	-0.346335
Н	-2.357910	3.341030	-0.075910
Н	-0.743746	3.320119	-0.758009
С	3.385302	-1.032476	-0.645569
Н	2.747459	-1.440810	-1.433071
С	3.386178	1.026504	0.637691
Н	2.748394	1.435459	1.425025
Ν	-0.960194	2.013731	0.850214
Ν	-0.955924	-0.844061	1.999945
Ν	-0.968116	-2.012166	-0.847886
Ν	-0.960893	0.845530	-1.998288
Ο	2.603427	-0.002202	-0.004566
Na	0.270079	-0.000469	-0.000700
С	3.815424	2.122891	-0.326647
Н	4.459502	1.738075	-1.120234
Н	2.947242	2.597072	-0.791148
Н	4.377481	2.891552	0.210734
С	3.812207	-2.128758	0.319935
Н	4.456497	-1.744453	1.113647
Н	2.942908	-2.601026	0.784383
Н	4.373198	-2.899019	-0.216433
Н	4.252793	-0.579930	-1.135730
Н	4.252728	0.572634	1.128230
С	-2.099480	-2.610411	-0.137629
Н	-2.587479	-3.272895	-0.869153
Н	-2.872631	-2.176288	0.499443
Н	-1.453707	-3.221665	0.494079
С	2.473260	-2.111916	1.073253
Н	3.264057	-2.768391	0.678053
Н	1.840511	-2.701496	1.739764
Н	2.951740	-1.332316	1.668188
С	1.970604	2.602638	1.009689
Н	2.339419	2.146091	1.930385
Н	1.091575	3.196873	1.262738
Н	2.746032	3.285704	0.629551
С	-2.595903	2.109676	-0.204834

9. Na-MeOH-2a

-971.2628381

	Н	-3.091489	2.785411	-0.918967
	Н	-2.374923	2.673497	0.703709
	Н	-3.302460	1.320083	0.055409
	С	-0.222649	-2.104663	-1.589510
	Н	0.103409	-1.349348	-2.306385
	Н	-0.579438	-2.956341	-2.191094
	С	0.979663	-2.581044	-0.765999
	Н	1.683577	-3.085296	-1.447588
	Н	0.652482	-3.341796	-0.054106
	С	2.477308	-0.649767	-0.863224
	Н	1.949353	-0.508849	-1.807377
	Н	3.427735	-1.145209	-1.119414
	С	2.805338	0.717794	-0.252990
	Н	3.504922	1.236391	-0.928230
	Н	3.344232	0.575987	0.686207
	С	1.060244	2.148627	-1.192919
	Н	1.135240	1.413377	-1.995278
	Н	1.663901	3.011656	-1.517454
	С	-0.394561	2.612979	-1.060197
	Η	-0.672790	3.137357	-1.988683
	Η	-0.467075	3.354848	-0.262213
	С	-1.639422	0.694865	-1.929846
	Η	-0.715348	0.575077	-2.497236
	Н	-2.344807	1.203138	-2.606946
	С	-2.215930	-0.685975	-1.595733
	Η	-2.489990	-1.181655	-2.540898
	Н	-3.147058	-0.564106	-1.038479
	С	-1.926510	-0.043586	3.750562
	Η	-2.699446	0.055162	2.989539
	Ν	-1.324015	-1.539446	-0.783058
	Ν	1.655233	-1.516298	0.005313
	Ν	1.622285	1.554852	0.037264
	Ν	-1.355658	1.534101	-0.748005
	0	-0.662698	-0.095642	3.059318
	Na	-0.161201	-0.010276	0.800016
	Н	-1.974691	0.820341	4.418040
	Н	-2.102290	-0.960792	4.318162
	Η	0.035577	-0.174143	3.717198
3701	С	3.385223	0.002495	-0.108733
	Н	4.306284	-0.098560	-0.702895
	Н	3.420628	-0.723367	0.705635
	Н	3.378025	0.999840	0.333172
	С	0.000000	3.349399	-0.067583
	Н	0.100479	4.286278	-0.636471
	Н	0.729676	3.359698	0.744368

10. Na-DCM-2a

-1815.253701

	Н	-0.994871	3.331036	0.379582
	С	-3.385223	-0.002495	-0.108733
	Н	-3.420628	0.723367	0.705635
	Н	-3.378025	-0.999840	0.333172
	Н	-4.306284	0.098560	-0.702895
	С	0.000000	-3.349399	-0.067583
	Н	-0.100479	-4.286278	-0.636471
	Н	-0.729676	-3.359698	0.744368
	Н	0.994871	-3.331036	0.379582
	С	2.069054	0.814616	-1.977657
	Н	1.397704	0.443196	-2.753298
	Н	3.043313	0.965584	-2.469390
	С	1.572819	2.177705	-1.481009
	Н	1.646177	2.894676	-2.314258
	Н	2.245900	2.547618	-0.704925
	С	-0.821787	2.080752	-1.968203
	Н	-0.453605	1.425380	-2.758874
	Н	-0.970661	3.065721	-2.438895
	С	-2.186373	1.579947	-1.481572
	Н	-2.898363	1.659424	-2.318742
	Н	-2.560630	2.247889	-0.702953
	С	-2.069054	-0.814616	-1.977657
	Н	-1.397704	-0.443196	-2.753298
	Н	-3.043313	-0.965584	-2.469390
	С	-1.572819	-2.177705	-1.481009
	Н	-1.646177	-2.894676	-2.314258
	Н	-2.245900	-2.547618	-0.704925
	С	0.821787	-2.080752	-1.968203
	Н	0.453605	-1.425380	-2.758874
	Н	0.970661	-3.065721	-2.438895
	С	2.186373	-1.579947	-1.481572
	Н	2.898363	-1.659424	-2.318742
	Н	2.560630	-2.247889	-0.702953
	С	0.000000	0.000000	4.095834
	Ν	2.174964	-0.211908	-0.919407
	Ν	0.208024	2.160559	-0.911229
	Ν	-2.174964	0.211908	-0.919407
	Ν	-0.208024	-2.160559	-0.911229
	Na	0.000000	0.000000	0.262727
	Н	-0.339921	0.835323	4.696953
	Н	0.339921	-0.835323	4.696953
	Cl	1.378959	0.559986	3.090087
	Cl	-1.378959	-0.559986	3.090087
-1369.583149	С	2.795174	2.014439	0.420610
	Н	3.589995	2.452596	-0.203753

11. K-H₂O-2a

Η	3.271070	1.464386	1.236217
Η	2.223869	2.835290	0.858267
С	-2.005176	2.777996	0.440348
Н	-2.452070	3.576875	-0.172500
Н	-1.448694	3.247687	1.255069
Н	-2.819241	2.200349	0.882201
С	-2.795174	-2.014439	0.420610
Н	-3.271070	-1.464386	1.236217
Н	-2.223869	-2.835290	0.858267
Н	-3.589995	-2.452596	-0.203753
С	2.005176	-2.777996	0.440348
Н	2.452070	-3.576875	-0.172500
Н	1.448694	-3.247687	1.255069
Н	2.819241	-2.200349	0.882201
С	1.195841	1.868609	-1.391924
Н	0.859222	1.162608	-2.151339
Н	1.882927	2.558355	-1.909888
С	0.000000	2.691634	-0.897589
Н	-0.341617	3.323920	-1.734684
Н	0.333113	3.383124	-0.119738
С	-1.871163	1.196274	-1.389265
Н	-1.169545	0.862956	-2.154265
Н	-2.561972	1.887997	-1.899781
С	-2.695736	-0.000200	-0.899328
Н	-3.326814	-0.338388	-1.738766
Н	-3.388182	0.331673	-0.121836
С	-1.195841	-1.868609	-1.391924
Н	-0.859222	-1.162608	-2.151339
Н	-1.882927	-2.558355	-1.909888
С	0.000000	-2.691634	-0.897589
Н	0.341617	-3.323920	-1.734684
Н	-0.333113	-3.383124	-0.119738
С	1.871163	-1.196274	-1.389265
Н	1.169545	-0.862956	-2.154265
Н	2.561972	-1.887997	-1.899781
С	2.695736	0.000200	-0.899328
Н	3.326814	0.338388	-1.738766
Н	3.388182	-0.331673	-0.121836
Ν	1.911658	1.120286	-0.340619
Ν	-1.116309	1.903709	-0.337467
Ν	-1.911658	-1.120286	-0.340619
N	1.116309	-1.903709	-0.337467
0	0.000000	0.000000	4.151018
Κ	0.000000	0.000000	1.439972
Н	0.529065	0.548611	4.740484
Н	-0.529065	-0.548611	4.740484

С	3.443327	-0.003169	-0.510177
Н	4.346149	-0.110678	-1.132681
Н	3.506251	-0.729514	0.303885
Н	3.459521	0.995268	-0.069221
С	0.000000	3.426890	-0.493490
Н	0.101651	4.336883	-1.106438
Н	0.728533	3.483846	0.318950
Н	-0.996595	3.433938	-0.048223
С	-3.443327	0.003169	-0.510177
Н	-3.506251	0.729514	0.303885
Н	-3.459521	-0.995268	-0.069221
Н	-4.346149	0.110678	-1.132681
С	0.000000	-3.426890	-0.493490
Н	-0.101651	-4.336883	-1.106438
Н	-0.728533	-3.483846	0.318950
Н	0.996595	-3.433938	-0.048223
С	2.062069	0.815229	-2.324213
Н	1.373355	0.439912	-3.081164
Н	3.021956	0.970844	-2.844525
С	1.575466	2.182898	-1.829760
Н	1.668699	2.895293	-2.667031
Н	2.250005	2.547961	-1.051429
С	-0.816449	2.063621	-2.322259
Н	-0.442120	1.379600	-3.084008
Н	-0.970474	3.027297	-2.836140
С	-2.185590	1.577169	-1.832058
Н	-2.894887	1.671418	-2.671882
Н	-2.552798	2.251618	-1.054684
С	-2.062069	-0.815229	-2.324213
Н	-1.373355	-0.439912	-3.081164
Н	-3.021956	-0.970844	-2.844525
С	-1.575466	-2.182898	-1.829760
Н	-1.668699	-2.895293	-2.667031
Н	-2.250005	-2.547961	-1.051429
С	0.816449	-2.063621	-2.322259
Н	0.442120	-1.379600	-3.084008
Н	0.970474	-3.027297	-2.836140
С	2.185590	-1.577169	-1.832058
Н	2.894887	-1.671418	-2.671882
Н	2.552798	-2.251618	-1.054684
С	-1.106521	-0.427137	4.065281
Н	-1.186887	-1.518582	4.011518
Н	-2.026186	0.014274	3.674019
С	-0.766711	0.037678	5.479810
Н	-1.228201	-0.587888	6.244762

12. K-THF-2a

-1525.648105

		Н	-1.099076	1.067459	5.636067
		С	0.766711	-0.037678	5.479810
		Н	1.228201	0.587888	6.244762
		Н	1.099076	-1.067459	5.636067
		С	1.106521	0.427137	4.065281
		Н	2.026186	-0.014274	3.674019
		Н	1.186887	1.518582	4.011518
		Ν	2.205071	-0.210346	-1.273446
		Ν	0.209036	2.197730	-1.270668
		Ν	-2.205071	0.210346	-1.273446
		Ν	-0.209036	-2.197730	-1.270668
		0	0.000000	0.000000	3.227199
		K	0.000000	0.000000	0.522044
13. K-DEE-2a	-1526.862703	С	0.354686	2.132724	2.695462
		Н	0.975347	2.603645	3.474441
		Н	-0.462854	1.601718	3.189277
		Н	-0.080622	2.929637	2.089669
		С	0.384890	2.711292	-2.150506
		Н	1.026186	3.468838	-2.628863
		Н	-0.421695	3.232145	-1.629668
		Н	-0.062734	2.105347	-2.940416
		С	0.355425	-2.132726	-2.695416
		Н	-0.462425	-1.602037	-3.189057
		Н	-0.079458	-2.929916	-2.089676
		Н	0.976169	-2.603396	-3.474486
		С	0.386198	-2.711338	2.150509
		Н	1.027785	-3.468733	2.628716
		Н	-0.420357	-3.232287	1.629722
		Н	-0.061471	-2.105685	2.940626
		С	2.173010	1.925726	1.110069
		Н	2.937719	1.209405	0.809432
		Н	2.684186	2.646554	1.769846
		С	1.685663	2.695603	-0.123025
		Н	2.527719	3.308156	-0.488203
		Н	0.909591	3.404647	0.175198
		С	2.178988	1.105915	-1.913759
		Н	2.931184	0.797053	-1.187834
		Н	2.706431	1.757913	-2.629868
		С	1.683543	-0.122433	-2.685648
		Н	2.521589	-0.492485	-3.300541
		Н	0.907720	0.181654	-3.392446
		С	2.173784	-1.925010	-1.110147
		Н	2.938148	-1.208330	-0.809520
		Н	2.685063	-2.645724	-1.769948
		С	1.686748	-2.695092	0.122974

		Н	2.529168	-3.307223	0.487987
		Н	0.910891	-3.404348	-0.175285
		С	2.179640	-1.105201	1.913663
		Н	2.931529	-0.795940	1.187607
		Н	2.707296	-1.756990	2.629784
		С	1.683649	0.122952	2.685594
		Н	2.521629	0.493327	3.300383
		Н	0.907991	-0.181540	3.392391
		С	-4.274908	-1.188526	-0.022946
		Η	-4.910172	-1.176996	-0.917800
		С	-4.275404	1.187267	0.023261
		Η	-4.935037	1.193842	-0.853788
		Ν	1.120968	1.204732	1.852227
		Ν	1.127358	1.863016	-1.207706
		Ν	1.121373	-1.204453	-1.852223
		Ν	1.128224	-1.862709	1.207697
		0	-3.471268	-0.000462	0.000022
		Η	-4.934250	-1.195391	0.854313
		С	-3.378186	-2.411199	-0.021795
		Η	-3.984832	-3.319195	-0.041187
		Η	-2.731589	-2.427894	-0.904028
		Η	-2.760674	-2.445074	0.880107
		Η	-4.910351	1.175465	0.918324
		С	-3.379201	2.410308	0.021776
		Η	-2.732308	2.427340	0.903791
		Η	-2.761974	2.444427	-0.880310
		Η	-3.986219	3.318056	0.041274
		K	-0.683726	-0.000104	-0.000027
14. K-MeOH-2a	-1408.891088	С	0.904632	-2.297299	2.354831
		Η	0.599830	-2.723325	3.324059
		Η	1.931106	-1.935540	2.452641
		Η	0.904364	-3.104283	1.619836
		С	-1.250703	-2.565736	-1.988556
		Η	-2.143644	-3.193915	-2.136613
		Η	-0.391593	-3.226872	-1.850864
		Η	-1.090657	-1.994051	-2.904586
		С	-0.614987	2.227248	-2.565142
		Η	-0.199424	1.599708	-3.357307
		Η	0.179264	2.887593	-2.211980
		Η	-1.404001	2.856196	-3.007662
		С	1.508560	2.489795	1.795497
		Η	1.293329	3.328028	2.477458
		Η	2.097601	2.877030	0.960373
		Η	2.126527	1.770918	2.336792
		С	-1.349548	-1.692118	1.707212

	Н	-2.028207	-0.839947	1.745128
	Н	-1.655621	-2.354953	2.533872
	С	-1.568637	-2.457664	0.397097
	Н	-2.578401	-2.900708	0.432299
	Н	-0.875479	-3.301156	0.349477
	С	-2.486033	-0.708823	-1.045439
	Н	-2.799210	-0.324928	-0.074625
	Н	-3.368214	-1.222834	-1.462175
	С	-2.153301	0.467381	-1.971719
	Н	-3.092321	1.007865	-2.179452
	Н	-1.810877	0.084317	-2.936325
	С	-1.609819	2.220083	-0.356309
	Н	-2.281788	1.616363	0.253701
	Н	-2.222231	3.052181	-0.742114
	С	-0.519066	2.823764	0.536531
	Н	-1.002768	3.546194	1.215517
	Н	0.170269	3.407742	-0.078199
	С	-0.475593	1.240621	2.401212
	Н	-1.509544	1.112899	2.080458
	Н	-0.513809	1.927580	3.263055
	С	0.070677	-0.101784	2.902320
	Н	-0.480615	-0.367285	3.820219
	Н	1.113180	0.021980	3.205732
	С	4.719631	-0.520641	-1.473940
	Н	4.697237	0.007456	-0.520918
	Ν	0.025788	-1.202971	1.919648
	Ν	-1.382088	-1.664871	-0.835190
	Ν	-1.113411	1.386598	-1.467978
	Ν	0.287658	1.844877	1.292840
	Ο	3.354209	-0.805551	-1.829978
	Н	5.199680	0.119820	-2.218785
	Н	5.298980	-1.439734	-1.351627
	Н	3.362778	-1.274178	-2.670851
	K	1.045267	-0.203692	-0.539659
6	С	-1.754337	-0.614686	-3.225716
	Н	-2.666718	-0.868582	-3.788262
	Н	-0.988373	-1.353403	-3.473906
	Н	-1.406703	0.358871	-3.576277
	С	-0.645057	3.381939	-0.689425
	Н	-1.312451	4.258210	-0.702501
	Н	-0.170811	3.303646	-1.670726
	Н	0.138325	3.570668	0.046814
	С	0.858320	0.607203	3.010823
	Н	1.592668	1.319658	2.627615
	Н	1.324504	-0.379659	3.021198

15. K-DCM-2a

-2252.886366

	Н	0.626067	0.881812	4.052025
	С	-0.256240	-3.383383	0.482012
	Н	-0.738636	-4.246302	0.967820
	Н	0.773399	-3.324535	0.842943
	Н	-0.224261	-3.580032	-0.591186
	С	-2.956651	0.455812	-1.415557
	Н	-3.374211	0.218361	-0.437043
	Н	-3.808944	0.441649	-2.115082
	С	-2.396559	1.882885	-1.395749
	Η	-3.245959	2.576086	-1.275559
	Η	-1.958213	2.114836	-2.369443
	С	-1.933492	2.197052	0.984713
	Н	-2.737560	1.464864	1.052921
	Н	-2.406448	3.177616	1.159674
	С	-0.930910	1.955569	2.119309
	Η	-1.437324	2.186714	3.071547
	Η	-0.109701	2.671609	2.036716
	С	-1.301717	-0.413150	2.607620
	Η	-2.286243	-0.156065	2.217128
	Η	-1.400070	-0.386528	3.705558
	С	-0.957781	-1.853285	2.208550
	Η	-1.659188	-2.524056	2.732588
	Η	0.035651	-2.107033	2.586081
	С	-2.324575	-2.153539	0.201539
	Η	-2.923354	-1.401348	0.714943
	Η	-2.806612	-3.120536	0.421620
	С	-2.413411	-1.925532	-1.312322
	Η	-3.451610	-2.130794	-1.622963
	Η	-1.796028	-2.665284	-1.827876
	С	4.678280	-0.027630	-0.646904
	Ν	-1.978657	-0.590394	-1.772720
	Ν	-1.359611	2.136249	-0.374005
	Ν	-0.334646	0.604250	2.151551
	Ν	-0.956953	-2.120106	0.755042
	Η	5.326530	-0.048064	0.221294
	Η	5.229756	-0.014203	-1.579687
	Cl	3.691622	1.471661	-0.566364
	Cl	3.672280	-1.516194	-0.621174
	Κ	0.478422	-0.018244	-0.481697
-700.7202837	С	-0.332383	3.110519	1.124724
	Η	-0.378873	4.116046	0.682830
	Η	0.421508	3.113909	1.913405
	Н	-1.295718	2.897441	1.588460
	С	-3.110519	-0.332383	1.124724
	Η	-4.116046	-0.378873	0.682830

16. [Li(Me₄cyclen)]⁺

S137

	Н	-3.113909	0.421508	1.913405
	Н	-2.897441	-1.295718	1.588460
	С	0.332383	-3.110519	1.124724
	Н	-0.421508	-3.113909	1.913405
	Н	1.295718	-2.897441	1.588460
	Н	0.378873	-4.116046	0.682830
	С	3.110519	0.332383	1.124724
	Н	4.116046	0.378873	0.682830
	Н	3.113909	-0.421508	1.913405
	Н	2.897441	1.295718	1.588460
	С	-1.033146	2.011552	-0.933713
	Н	-0.622391	1.449850	-1.776552
	Н	-1.271897	3.014355	-1.319193
	С	-2.322628	1.345081	-0.447388
	Н	-3.045822	1.309286	-1.274331
	Н	-2.780067	1.959078	0.329677
	С	-2.011552	-1.033146	-0.933713
	Η	-1.449850	-0.622391	-1.776552
	Η	-3.014355	-1.271897	-1.319193
	С	-1.345081	-2.322628	-0.447388
	Н	-1.309286	-3.045822	-1.274331
	Н	-1.959078	-2.780067	0.329677
	С	1.033146	-2.011552	-0.933713
	Н	0.622391	-1.449850	-1.776552
	Н	1.271897	-3.014355	-1.319193
	С	2.322628	-1.345081	-0.447388
	Η	3.045822	-1.309286	-1.274331
	Н	2.780067	-1.959078	0.329677
	С	2.011552	1.033146	-0.933713
	Н	1.449850	0.622391	-1.776552
	Н	3.014355	1.271897	-1.319193
	С	1.345081	2.322628	-0.447388
	Н	1.309286	3.045822	-1.274331
	Н	1.959078	2.780067	0.329677
	N	0.000000	2.079359	0.123556
	N	-2.079359	0.000000	0.123556
	N	0.000000	-2.079359	0.123556
	N T	2.079359	0.000000	0.123556
	Lı	0.000000	0.000000	0.705431
-855 4777801	C	-0 326637	3 349567	0 921810
555.1777001	н	-0 314401	4 285740	0 343946
	Н	0 395054	3 440327	1 735982
	Н	-1.317366	3.239582	1.364779
	C	-3.349567	-0.326637	0.921810
	н	-4 285740	-0 314401	0 343946
	••		0.011101	0.0.00000

17. [Na(Me₄cyclen)]⁺

	Н	-3.440327	0.395054	1.735982
	Н	-3.239582	-1.317366	1.364779
	С	0.326637	-3.349567	0.921810
	Н	-0.395054	-3.440327	1.735982
	Н	1.317366	-3.239582	1.364779
	Н	0.314401	-4.285740	0.343946
	С	3.349567	0.326637	0.921810
	Н	4.285740	0.314401	0.343946
	Н	3.440327	-0.395054	1.735982
	Н	3.239582	1.317366	1.364779
	С	-1.015712	1.988412	-0.968838
	Н	-0.583673	1.364066	-1.752485
	Н	-1.258831	2.949810	-1.447655
	С	-2.325594	1.359527	-0.477632
	Н	-3.042787	1.363851	-1.313388
	Н	-2.763247	1.990776	0.298515
	С	-1.988412	-1.015712	-0.968838
	Н	-1.364066	-0.583673	-1.752485
	Н	-2.949810	-1.258831	-1.447655
	С	-1.359527	-2.325594	-0.477632
	Н	-1.363851	-3.042787	-1.313388
	Н	-1.990776	-2.763247	0.298515
	С	1.015712	-1.988412	-0.968838
	Н	0.583673	-1.364066	-1.752485
	Н	1.258831	-2.949810	-1.447655
	С	2.325594	-1.359527	-0.477632
	Н	3.042787	-1.363851	-1.313388
	Н	2.763247	-1.990776	0.298515
	С	1.988412	1.015712	-0.968838
	Н	1.364066	0.583673	-1.752485
	Н	2.949810	1.258831	-1.447655
	С	1.359527	2.325594	-0.477632
	Н	1.363851	3.042787	-1.313388
	Н	1.990776	2.763247	0.298515
	Ν	0.000000	2.177756	0.089956
	Ν	-2.177756	0.000000	0.089956
	Ν	0.000000	-2.177756	0.089956
	Ν	2.177756	0.000000	0.089956
	Na	0.000000	0.000000	1.195848
-1293.111336	С	-0.324337	3.428577	0.722449
	Н	-0.299376	4.334983	0.097608
	Н	0.390547	3.561629	1.538110
	Н	-1.321598	3.352200	1.159435
	С	-3.428577	-0.324337	0.722449
	Н	-4.334983	-0.299376	0.097608

18. [K(Me₄cyclen)]⁺

	Н	-3.561629	0.390547	1.538110
	Н	-3.352200	-1.321598	1.159435
	С	0.324337	-3.428577	0.722449
	Н	-0.390547	-3.561629	1.538110
	Η	1.321598	-3.352200	1.159435
	Η	0.299376	-4.334983	0.097608
	С	3.428577	0.324337	0.722449
	Η	4.334983	0.299376	0.097608
	Н	3.561629	-0.390547	1.538110
	Н	3.352200	1.321598	1.159435
	С	-1.007909	1.976579	-1.092821
	Η	-0.569832	1.327908	-1.851299
	Η	-1.251652	2.918922	-1.610096
	С	-2.324603	1.363754	-0.599678
	Н	-3.041271	1.387838	-1.437359
	Н	-2.753365	2.000728	0.177925
	С	-1.976579	-1.007909	-1.092821
	Н	-1.327908	-0.569832	-1.851299
	Н	-2.918922	-1.251652	-1.610096
	С	-1.363754	-2.324603	-0.599678
	Н	-1.387838	-3.041271	-1.437359
	Н	-2.000728	-2.753365	0.177925
	С	1.007909	-1.976579	-1.092821
	Н	0.569832	-1.327908	-1.851299
	Н	1.251652	-2.918922	-1.610096
	С	2.324603	-1.363754	-0.599678
	Н	3.041271	-1.387838	-1.437359
	Η	2.753365	-2.000728	0.177925
	С	1.976579	1.007909	-1.092821
	Η	1.327908	0.569832	-1.851299
	Η	2.918922	1.251652	-1.610096
	С	1.363754	2.324603	-0.599678
	Η	1.387838	3.041271	-1.437359
	Η	2.000728	2.753365	0.177925
	Ν	0.000000	2.212620	-0.039317
	Ν	-2.212620	0.000000	-0.039317
	Ν	0.000000	-2.212620	-0.039317
	Ν	2.212620	0.000000	-0.039317
	K	0.000000	0.000000	1.688672
93.2567013	С	-0.138374	3.755832	0.604027
	Η	-0.101192	4.572646	-0.143676
	Η	0.585678	3.982836	1.390825
	Η	-1.131516	3.769668	1.058976
	С	-2.493804	-0.337562	1.473222
	Η	-3.589282	-0.475843	1.371253

19. Me₄cyclen

-69

		Η	-2.317101	0.443608	2.215037
		Н	-2.066205	-1.260280	1.869588
		С	0.138374	-3.755832	0.604027
		Н	-0.585678	-3.982836	1.390825
		Н	1.131516	-3.769668	1.058976
		Н	0.101192	-4.572646	-0.143676
		С	2.493804	0.337562	1.473222
		Н	3.589282	0.475843	1.371253
		Н	2.317101	-0.443608	2.215037
		Н	2.066205	1.260280	1.869588
		С	-0.902110	2.035904	-0.908388
		Н	-0.477535	1.326638	-1.619673
		Н	-1.254632	2.897345	-1.507267
		С	-2.108537	1.376538	-0.222557
		Η	-2.973483	1.409713	-0.913320
		Н	-2.390833	1.978817	0.643930
		С	-2.002934	-0.963654	-0.822512
		Η	-1.494130	-0.591396	-1.715828
		Η	-3.070421	-1.073632	-1.112424
		С	-1.494976	-2.376209	-0.497380
		Η	-1.619196	-2.986069	-1.415412
		Η	-2.155562	-2.827871	0.248282
		С	0.902110	-2.035904	-0.908388
		Η	0.477535	-1.326638	-1.619673
		Η	1.254632	-2.897345	-1.507267
		С	2.108537	-1.376538	-0.222557
		Η	2.973483	-1.409713	-0.913320
		Н	2.390833	-1.978817	0.643930
		С	2.002934	0.963654	-0.822512
		Η	1.494130	0.591396	-1.715828
		Η	3.070421	1.073632	-1.112424
		С	1.494976	2.376209	-0.497380
		Н	1.619196	2.986069	-1.415412
		Н	2.155562	2.827871	0.248282
		Ν	0.138374	2.446452	0.034118
		Ν	-1.830700	0.019210	0.233201
		Ν	-0.138374	-2.446452	0.034118
		N	1.830700	-0.019210	0.233201
20. [Li-H ₂ O] ⁺	-83.79909206	0	0.000000	0.000000	0.332319
		Li	0.000000	0.000000	-1.495843
		Н	0.000000	0.771581	0.914488
		Η	0.000000	-0.771581	0.914488
21. [Li-THF]+	-239.8751039	С	0.000000	1.207615	0.198547
		Н	0.994568	1.655053	0.260170

		Н	-0.744008	1.898682	0.596975
		С	-0.316013	0.699765	-1.201063
		Н	0.099628	1.351991	-1.969396
		Н	-1.396012	0.637778	-1.354218
		С	0.316013	-0.699765	-1.201063
		Н	-0.099628	-1.351991	-1.969396
		Н	1.396012	-0.637778	-1.354218
		С	0.000000	-1.207615	0.198547
		Н	0.744008	-1.898682	0.596975
		Н	-0.994568	-1.655053	0.260170
		0	0.000000	0.000000	1.053727
		Li	0.000000	0.000000	2.844440
22. [Li-DEE]+, TT	-241.0917933	С	0.000000	1.224545	-0.667438
		Н	-0.889419	1.222354	-1.303203
		С	0.000000	-1.224545	-0.667438
		Н	-0.889419	-1.222354	-1.303203
		0	0.000000	0.000000	0.118163
		Н	0.889419	1.222354	-1.303203
		С	0.000000	2.402488	0.285643
		Н	0.000000	3.339131	-0.275080
		Н	-0.898633	2.413608	0.913154
		Н	0.898633	2.413608	0.913154
		Н	0.889419	-1.222354	-1.303203
		С	0.000000	-2.402488	0.285643
		Н	0.898633	-2.413608	0.913154
		Н	-0.898633	-2.413608	0.913154
		Н	0.000000	-3.339131	-0.275080
		Li	0.000000	0.000000	1.915535
23. [Li-DEE]+, TG	-241.0893162	С	0.877422	-0.659725	0.251286
		Н	0.491669	-1.469054	-0.371050
		С	-1.354227	0.359187	0.514477
		Η	-1.341509	-0.089303	1.511356
		0	0.037741	0.515104	0.087361
		Н	0.841731	-0.966734	1.300086
		С	2.286654	-0.276830	-0.164821
		Η	2.963373	-1.126215	-0.057064
		Η	2.334133	0.011543	-1.224171
		Н	2.697357	0.519214	0.471431
		Н	-1.733339	1.378355	0.608580
		С	-2.186572	-0.447579	-0.464006
		Н	-2.171132	-0.001850	-1.461230
		Н	-1.855734	-1.485185	-0.535489
		Н	-3.223452	-0.460415	-0.118965
		Li	0.985103	1.906166	-0.547999

24. [Li-DEE]+, GG	-241.0856891	С	0.000000	1.235429	-0.126243
		Н	0.476212	1.989776	0.505417
		С	0.000000	-1.235429	-0.126243
		Н	-0.476212	-1.989776	0.505417
		0	0.000000	0.000000	0.666792
		С	1.400330	-1.654816	-0.531151
		Н	1.884553	-0.908238	-1.163493
		Н	2.033726	-1.835489	0.340940
		Н	1.345833	-2.584933	-1.102549
		С	-1.400330	1.654816	-0.531151
		Η	-1.884553	0.908238	-1.163493
		Н	-2.033726	1.835489	0.340940
		Н	-1.345833	2.584933	-1.102549
		Н	0.648697	1.079261	-0.989647
		Н	-0.648697	-1.079261	-0.989647
		Li	0.000000	0.000000	2.457685
25. [Li-MeOH] ⁺	-123.1111405	С	0.447808	-0.866583	0.000000
		Н	-0.445839	-1.488006	0.000000
		0	0.000000	0.528819	0.000000
		Η	1.032205	-1.062906	0.898153
		Η	1.032205	-1.062906	-0.898153
		Η	0.778840	1.098397	0.000000
		Li	-1.694753	1.161456	0.000000
26. [Li-DCM]+	-967.0933228	С	0.000000	0.000000	0.951629
		Η	-0.908753	0.000000	1.543098
		Н	0.908753	0.000000	1.543098
		Cl	0.000000	1.481373	-0.087240
		Cl	0.000000	-1.481373	-0.087240
		Li	0.000000	0.000000	-1.943265
27. [Na-H ₂ O] ⁺	-238.583059	0	0.000000	0.000000	-1.097421
		Na	0.000000	0.000000	1.104373
		Η	0.000000	0.766085	-1.684365
		Н	0.000000	-0.766085	-1.684365
28. [Na-THF] ⁺	-394.6543455	С	0.490240	1.093711	-0.326338
		Η	1.582429	1.104473	-0.268787
		Η	0.095160	2.032250	0.067414
		С	0.000000	0.767784	-1.731710
		Н	0.647639	1.193305	-2.498632
		Н	-1.010559	1.153841	-1.886471
		С	0.000000	-0.767784	-1.731710
		Н	-0.647639	-1.193305	-2.498632

		Н	1.010559	-1.153841	-1.886471
		С	-0.490240	-1.093711	-0.326338
		Н	-0.095160	-2.032250	0.067414
		Н	-1.582429	-1.104473	-0.268787
		0	0.000000	0.000000	0.522833
		Na	0.000000	0.000000	2.698807
29. [Na-DEE]+, TT	-395.8710419	С	0.000000	1.210673	-1.031338
		Η	-0.888238	1.211781	-1.671156
		С	0.000000	-1.210673	-1.031338
		Η	-0.888238	-1.211781	-1.671156
		0	0.000000	0.000000	-0.240173
		Η	0.888238	1.211781	-1.671156
		С	0.000000	2.404373	-0.096782
		Н	0.000000	3.333193	-0.670399
		Н	-0.898342	2.422566	0.530860
		Н	0.898342	2.422566	0.530860
		Η	0.888238	-1.211781	-1.671156
		С	0.000000	-2.404373	-0.096782
		Н	0.898342	-2.422566	0.530860
		Н	-0.898342	-2.422566	0.530860
		Н	0.000000	-3.333193	-0.670399
		Na	0.000000	0.000000	1.941891
30. [Na-DEE] ⁺ , TG	-395.8682461	С	0.418776	-1.220416	0.137676
		Η	-0.118805	-1.761484	-0.644909
		С	-1.499169	0.213647	0.599942
		Н	-1.672499	-0.466168	1.439693
		Ο	-0.092682	0.129084	0.233866
		Н	0.247968	-1.727458	1.092762
		С	1.901012	-1.157872	-0.181591
		Η	2.316138	-2.164877	-0.254369
		Н	2.086211	-0.679675	-1.151812
		Η	2.464261	-0.648625	0.610428
		Η	-1.638532	1.233112	0.967237
		С	-2.438438	-0.074728	-0.558806
		Η	-2.253744	0.601775	-1.396948
		Н	-2.354049	-1.102938	-0.914973
		Н	-3.470429	0.072621	-0.230489
		Na	1.349259	1.731569	-0.124625
31. [Na-DEE] ⁺ , GG	-395.865052	С	0.000000	1.223408	-0.585963
		Η	0.496067	1.978843	0.029705
		С	0.000000	-1.223408	-0.585963
		Η	-0.496067	-1.978843	0.029705
		0	0.000000	0.000000	0.206324
		С	1.403561	-1.662754	-0.965588
---------------------------------------	--------------	----	-----------	-----------	-----------
		Н	1.909282	-0.918573	-1.584169
		Н	2.017252	-1.849180	-0.080163
		Н	1.354539	-2.591637	-1.539578
		С	-1.403561	1.662754	-0.965588
		Н	-1.909282	0.918573	-1.584169
		Н	-2.017252	1.849180	-0.080163
		Н	-1.354539	2.591637	-1.539578
		Н	0.626311	1.067542	-1.467333
		Н	-0.626311	-1.067542	-1.467333
		Na	0.000000	0.000000	2.386463
32. [Na-MeOH] ⁺	-277.8930517	С	1.451679	0.721488	0.000000
		Н	1.846125	-0.293668	0.000000
		0	0.000000	0.618169	0.000000
		Н	1.794325	1.240329	0.896183
		Н	1.794325	1.240329	-0.896183
		Н	-0.358497	1.512826	0.000000
		Na	-1.253304	-1.179463	0.000000
33. [Na-DCM] ⁺	-1121.880858	С	0.000000	0.000000	-1.328603
		Н	0.905828	0.000000	-1.923990
		Н	-0.905828	0.000000	-1.923990
		Cl	0.000000	1.491696	-0.313855
		Cl	0.000000	-1.491696	-0.313855
		Na	0.000000	0.000000	2.044606
34. [K-H ₂ O] ⁺	-676.2438076	0	0.000000	0.000000	-1.649072
		Κ	0.000000	0.000000	0.930248
		Н	0.000000	0.761766	-2.241069
		Η	0.000000	-0.761766	-2.241069
35. [K-THF] ⁺	-832.3127527	С	0.486905	1.088917	-0.807735
		Н	1.580186	1.105909	-0.753466
		Η	0.092587	2.029576	-0.416432
		С	0.000000	0.767672	-2.217062
		Н	0.647252	1.195431	-2.983211
		Н	-1.011251	1.152536	-2.371810
		С	0.000000	-0.767672	-2.217062
		Η	-0.647252	-1.195431	-2.983211
		Н	1.011251	-1.152536	-2.371810
		С	-0.486905	-1.088917	-0.807735
		Н	-0.092587	-2.029576	-0.416432
		Н	-1.580186	-1.105909	-0.753466
		Ο	0.000000	0.000000	0.037762
		Κ	0.000000	0.000000	2.581331

36. [K-DEE] ⁺ , TT	-833.5282366	С	0.000000	1.198636	-1.401411
		Н	-0.887234	1.196637	-2.044548
		С	0.000000	-1.198636	-1.401411
		Н	-0.887234	-1.196637	-2.044548
		0	0.000000	0.000000	-0.600968
		Н	0.887234	1.196637	-2.044548
		С	0.000000	2.412969	-0.492548
		Н	0.000000	3.326480	-1.090060
		Н	-0.896904	2.443528	0.135528
		Н	0.896904	2.443528	0.135528
		Н	0.887234	-1.196637	-2.044548
		С	0.000000	-2.412969	-0.492548
		Н	0.896904	-2.443528	0.135528
		Н	-0.896904	-2.443528	0.135528
		Н	0.000000	-3.326480	-1.090060
		K	0.000000	0.000000	1.965866
37. [K-DEE]+, TG	-833.5259071	С	0.582793	1.479327	0.104816
		Н	1.287125	1.673105	-0.708919
		С	1.546349	-0.687798	0.598424
		Н	2.019088	-0.189261	1.451497
		Ο	0.361026	0.058608	0.228517
		Н	1.025203	1.848002	1.037068
		С	-0.740361	2.169939	-0.168476
		Н	-0.588632	3.247166	-0.260063
		Н	-1.181721	1.833417	-1.113226
		Н	-1.449928	2.017739	0.652091
		Н	1.180155	-1.656787	0.950170
		С	2.529288	-0.876802	-0.547133
		Н	2.050985	-1.361593	-1.402028
		Н	2.960818	0.068310	-0.881335
		Н	3.353926	-1.513365	-0.216730
		Κ	-1.950191	-0.997031	-0.066444
38. [K-DEE] ⁺ , GG	-833.5238142	С	0.000000	1.217729	-1.004228
		Н	0.472751	1.979883	-0.377614
		С	0.000000	-1.217729	-1.004228
		Н	-0.472751	-1.979883	-0.377614
		0	0.000000	0.000000	-0.215594
		С	1.400935	-1.646763	-1.411588
		Н	1.886165	-0.901196	-2.044846
		Н	2.034393	-1.818221	-0.537136
		Н	1.351753	-2.579934	-1.978571
		С	-1.400935	1.646763	-1.411588
		Н	-1.886165	0.901196	-2.044846

		Н	-2.034393	1.818221	-0.537136
		Н	-1.351753	2.579934	-1.978571
		Н	0.644520	1.079586	-1.876347
		Н	-0.644520	-1.079586	-1.876347
		K	0.000000	0.000000	2.333872
39. [K-MeOH] ⁺	-715.5529988	С	1.323371	1.690551	0.000000
		Н	2.041402	0.870661	0.000000
		0	0.000000	1.101003	0.000000
		Н	1.478334	2.296382	0.894980
		Н	1.478334	2.296382	-0.894980
		Н	-0.637674	1.823365	0.000000
		K	-0.647401	-1.380954	0.000000
40. [K-DCM] ⁺	-1559.543805	С	0.000000	0.000000	-1.762902
		Н	0.904439	0.000000	-2.359615
		Н	-0.904439	0.000000	-2.359615
		Cl	0.000000	1.495416	-0.758585
		Cl	0.000000	-1.495416	-0.758585
		K	0.000000	0.000000	2.162555
41. [K(Me ₄ cyclen)][HBPh ₃]	-2013.877871	K	0.789132	-0.105528	-0.127702
		Н	-1.536067	-0.064939	1.023432
		В	-2.312444	-0.009004	0.053772
		Ν	3.036813	-1.988569	-0.331929
		Ν	1.991825	-0.908670	2.402791
		Ν	2.173495	1.998897	1.281620
		Ν	3.236854	0.906571	-1.446844
		С	3.185744	-2.627848	0.985324
		Н	2.344189	-3.313224	1.109219
		Н	4.095733	-3.254627	1.022311
		С	3.231887	-1.663965	2.177948
		Н	3.496996	-2.254513	3.073582
		Н	4.049962	-0.956204	2.038501
		С	2.216482	0.323544	3.175874
		Н	1.239400	0.676843	3.511909
		Н	2.797558	0.115931	4.093046
		С	2.927279	1.450988	2.417245
		Н	3.162356	2.246194	3.148010
		Н	3.889159	1.087772	2.053405
		С	3.039649	2.705611	0.325843
		Н	3.685974	3.439802	0.841284
		Н	2.390136	3.286253	-0.332674
		С	3.945539	1.802756	-0.520770
		Н	4.644010	2.455762	-1.074675
		Н	4 567444	1 196980	0 138895

С	4.065340	-0.242158	-1.845132
Н	5.065771	0.084202	-2.184050
Н	3.590720	-0.700555	-2.715788
С	4.265594	-1.306629	-0.759343
Н	5.003989	-2.035684	-1.140312
Н	4.727929	-0.845752	0.114054
С	2.607241	-2.976664	-1.327318
Н	3.341667	-3.791212	-1.454304
Н	2.462487	-2.501913	-2.299038
Н	1.650132	-3.411713	-1.034684
С	0.980778	-1.738522	3.067229
Н	1.283311	-2.028624	4.088405
Н	0.802154	-2.651666	2.497888
Н	0.034231	-1.197884	3.122610
С	1.095336	2.885014	1.738813
Н	0.418869	2.350424	2.406766
Н	0.503034	3.225899	0.888414
Н	1.483260	3.767496	2.276977
С	2.776270	1.637191	-2.631789
Н	3.612313	2.068696	-3.209771
Н	2.102646	2.445558	-2.346059
Η	2.217675	0.966054	-3.287732
С	-1.973104	1.401583	-0.723517
С	-1.295452	1.519449	-1.951689
Н	-1.031588	0.620587	-2.503603
С	-0.979191	2.757004	-2.526087
Н	-0.477601	2.793277	-3.489103
С	-1.332103	3.938311	-1.882186
Η	-1.104056	4.900904	-2.327908
С	-2.010725	3.861708	-0.662905
Η	-2.309984	4.772865	-0.153190
С	-2.319713	2.623747	-0.107132
Η	-2.862929	2.591755	0.832386
С	-2.074024	-1.375199	-0.824445
С	-1.496204	-2.517219	-0.236339
Η	-1.192198	-2.464026	0.806938
С	-1.348053	-3.727743	-0.917911
Η	-0.919345	-4.588424	-0.411641
С	-1.773574	-3.839987	-2.239602
Η	-1.667847	-4.776868	-2.776358
С	-2.359481	-2.733588	-2.853850
Η	-2.715461	-2.809635	-3.876949
С	-2.505467	-1.534759	-2.156660
Η	-2.987588	-0.702027	-2.659099
С	-3.822407	-0.014992	0.674219
С	-4.952952	0.285676	-0.106904

	Н	-4.817464	0.567898	-1.147381
	С	-6.246556	0.242254	0.408645
	Н	-7.092274	0.481504	-0.229400
	С	-6.458386	-0.105639	1.742421
	Н	-7.463930	-0.139540	2.149105
	С	-5.360649	-0.404939	2.545104
	Н	-5.508257	-0.673798	3.587191
	С	-4.071185	-0.357529	2.013165
	Н	-3.228177	-0.592119	2.657899
-720.6462035	Н	-0.002344	0.001748	-2.075477
	В	-0.004259	-0.005025	-0.844755
	С	-1.062833	-1.167932	-0.376623
	С	-0.761601	-2.206967	0.520767
	Н	0.236274	-2.258090	0.946018
	С	-1.694620	-3.182638	0.882094
	Н	-1.412389	-3.968589	1.578964
	С	-2.982023	-3.154528	0.353243
	Н	-3.711172	-3.911010	0.629531
	С	-3.317373	-2.136384	-0.542107
	Н	-4.317259	-2.097933	-0.968290
	С	-2.374897	-1.173459	-0.892860
	Н	-2.657059	-0.391558	-1.593804
	С	1.527346	-0.328080	-0.357820
	С	2.409847	-1.059012	-1.175114
	Н	2.057848	-1.381256	-2.151741
	С	3.709832	-1.377789	-0.783161
	Н	4.356035	-1.941705	-1.451842
	С	4.186083	-0.970735	0.462943
	Н	5.198664	-1.212460	0.774065
	С	3.341190	-0.242670	1.299179
	Н	3.696028	0.087555	2.272596
	С	2.043944	0.069634	0.889363
	Н	1.411723	0.650744	1.555290
	С	-0.474547	1.488194	-0.353771
	С	-1.286332	1.731127	0.769180
	Н	-1.661705	0.883802	1.336498
	С	-1.640586	3.020464	1.174680
	Н	-2.271950	3.157758	2.049681
	С	-1.192440	4.129661	0.460810
	Н	-1.468182	5.134603	0.768515
	С	-0.386697	3.926494	-0.661027
	Н	-0.030864	4.779690	-1.234348
	С	-0.041978	2.633838	-1.050291
	Н	0.583750	2.496525	-1.928788

42. [HBPh₃]⁻

Κ	0.0000000	0.0000000	1.0496190
Ν	-1.9876750	-1.0093550	-0.8626620
Ν	-1.0093550	1.9876750	-0.8626620
Ν	1.9876750	1.0093550	-0.8626620
Ν	1.0093550	-1.9876750	-0.8626620
С	2.2654970	-1.4515930	-1.4206110
Н	3.0334270	-1.5382300	-0.6495410
Н	2.6131800	-2.0741350	-2.2642830
С	2.2125390	0.0000000	-1.9125180
Н	3.1535020	0.1997220	-2.4532480
Н	1.4240580	0.0978080	-2.6579660
С	1.4515930	2.2654970	-1.4206110
Н	1.5382300	3.0334270	-0.6495410
Н	2.0741350	2.6131800	-2.2642830
С	0.0000000	2.2125390	-1.9125180
Н	-0.1997220	3.1535020	-2.4532480
Н	-0.0978080	1.4240580	-2.6579660
С	-2.2654970	1.4515930	-1.4206110
Н	-3.0334270	1.5382300	-0.6495410
Н	-2.6131800	2.0741350	-2.2642830
С	-2.2125390	0.0000000	-1.9125180
Н	-3.1535020	-0.1997220	-2.4532480
Н	-1.4240580	-0.0978080	-2.6579660
С	-1.4515930	-2.2654970	-1.4206110
Н	-1.5382300	-3.0334270	-0.6495410
Н	-2.0741350	-2.6131800	-2.2642830
С	0.0000000	-2.2125390	-1.9125180
Н	0.1997220	-3.1535020	-2.4532480
Н	0.0978080	-1.4240580	-2.6579660
С	-1.7960430	3.0405500	1.2900350
Η	-2.0930840	4.0202680	1.6803400
Η	-2.6741310	2.3849320	1.3125560
С	-1.2751570	3.2365580	-0.1245840
Η	-1.9866130	3.8754990	-0.6752980
Η	-0.3455700	3.8027030	-0.0452390
С	-3.2365580	-1.2751570	-0.1245840
Η	-3.8027030	-0.3455700	-0.0452390
Η	-3.8754990	-1.9866130	-0.6752980
С	-3.0405500	-1.7960430	1.2900350
Η	-4.0202680	-2.0930840	1.6803400
Η	-2.3849320	-2.6741310	1.3125560
С	1.7960430	-3.0405500	1.2900350
Н	2.6741310	-2.3849320	1.3125560
Η	2.0930840	-4.0202680	1.6803400
С	1.2751570	-3.2365580	-0.1245840
Η	1.9866130	-3.8754990	-0.6752980

-1751.3868855

43. K+-1c

		Η	0.3455700	-3.8027030	-0.0452390
		С	3.0405500	1.7960430	1.2900350
		Η	2.3849320	2.6741310	1.3125560
		Η	4.0202680	2.0930840	1.6803400
		С	3.2365580	1.2751570	-0.1245840
		Η	3.8754990	1.9866130	-0.6752980
		Η	3.8027030	0.3455700	-0.0452390
		0	2.4822950	0.7464680	2.0988260
		Η	2.5761000	1.0038090	3.0210860
		0	0.7464680	-2.4822950	2.0988260
		Н	1.0038090	-2.5761000	3.0210860
		0	-2.4822950	-0.7464680	2.0988260
		Н	-2.5761000	-1.0038090	3.0210860
		0	-0.7464680	2.4822950	2.0988260
		Η	-1.0038090	2.5761000	3.0210860
44. K+-1d	-3426.4680750	K	0.0000000	0.0000000	0.3614100
		0	-1.2982280	2.0407440	-1.0670950
		0	-1.6130350	-1.9353900	-0.8827380
		0	1.2982280	-2.0407440	-1.0670950
		0	1.6130350	1.9353900	-0.8827380
		0	-0.6861410	5.7464380	1.5892900
		0	-5.5134670	-0.4178800	1.0649750
		0	0.6861410	-5.7464380	1.5892900
		0	5.5134670	0.4178800	1.0649750
		Ν	-0.9158120	2.0305240	2.3996740
		Ν	-2.0118780	-0.9371480	2.4011960
		Ν	0.9158120	-2.0305240	2.3996740
		Ν	2.0118780	0.9371480	2.4011960
		Ν	-1.0450560	3.2420310	-0.7234580
		Ν	-0.7412530	5.0060280	0.5686780
		Ν	-2.8031430	-1.4568220	-0.7722190
		Ν	-4.6597070	-0.7244600	0.1803300
		Ν	1.0450560	-3.2420310	-0.7234580
		Ν	0.7412530	-5.0060280	0.5686780
		Ν	2.8031430	1.4568220	-0.7722190
		Ν	4.6597070	0.7244600	0.1803300
		С	-1.7394670	1.3699320	3.4318650
		С	-2.6806070	0.2667600	2.9373650
		С	-1.3609840	-1.7219790	3.4679380
		С	-0.2663600	-2.6836860	2.9956400
		С	1.7394670	-1.3699320	3.4318650
		С	2.6806070	-0.2667600	2.9373650
		С	1.3609840	1.7219790	3.4679380
		С	0.2663600	2.6836860	2.9956400
		С	-1.7520570	3.0199710	1.6948660

С	-1.1256130	3.7212830	0.5368690
С	-0.8682680	4.3660940	-1.7170370
С	-0.2429510	5.4674360	-0.7883850
С	-2.2845950	4.7151510	-2.2135860
С	0.0000000	3.9232940	-2.8881610
С	-0.7181440	6.8958800	-1.0374560
С	1.2912040	5.4181150	-0.7094380
С	-2.9952760	-1.7941630	1.7114430
С	-3.4647440	-1.2861540	0.3917930
С	-3.6928710	-1.1847980	-1.9587230
С	-4.8551700	-0.3628890	-1.2789360
С	-2.9095000	-0.4350070	-3.0356570
С	-4.1391460	-2.5582400	-2.4920060
С	-4.6855920	1.1623870	-1.3662220
С	-6.2741970	-0.7505270	-1.6939520
С	1.7520570	-3.0199710	1.6948660
С	1.1256130	-3.7212830	0.5368690
С	0.8682680	-4.3660940	-1.7170370
С	0.2429510	-5.4674360	-0.7883850
С	0.0000000	-3.9232940	-2.8881610
С	2.2845950	-4.7151510	-2.2135860
С	-1.2912040	-5.4181150	-0.7094380
С	0.7181440	-6.8958800	-1.0374560
С	2.9952760	1.7941630	1.7114430
С	3.4647440	1.2861540	0.3917930
С	3.6928710	1.1847980	-1.9587230
С	4.8551700	0.3628890	-1.2789360
С	2.9095000	0.4350070	-3.0356570
С	4.1391460	2.5582400	-2.4920060
С	4.6855920	-1.1623870	-1.3662220
С	6.2741970	0.7505270	-1.6939520
Н	-2.3579690	2.1129940	3.9637640
Η	-1.0691460	0.9595590	4.1852790
Η	-3.3439180	0.0004040	3.7779550
Н	-3.3428500	0.6556230	2.1616060
Н	-0.9420940	-1.0273830	4.1942240
Н	-2.1060900	-2.3153200	4.0250050
Η	-0.6752540	-3.3696500	2.2525390
Н	0.0205960	-3.3136360	3.8541300
Η	2.3579690	-2.1129940	3.9637640
Н	1.0691460	-0.9595590	4.1852790
Н	3.3428500	-0.6556230	2.1616060
Н	3.3439180	-0.0004040	3.7779550
Н	2.1060900	2.3153200	4.0250050
Η	0.9420940	1.0273830	4.1942240
Н	0.6752540	3.3696500	2.2525390

Η	-0.0205960	3.3136360	3.8541300
Н	-2.6326990	2.5024790	1.3089170
Н	-2.0906830	3.8145290	2.3781100
Н	-2.7242140	3.8285620	-2.6726800
Н	-2.9361080	5.0449330	-1.4020550
Н	-2.2420020	5.5043380	-2.9658430
Н	-0.5278780	3.1636130	-3.4655240
Н	0.9357660	3.4913470	-2.5428960
Н	0.1959640	4.7745240	-3.5444070
Н	-0.3865590	7.2300690	-2.0231160
Н	-1.8013720	6.9938770	-0.9794250
Н	-0.2828210	7.5533530	-0.2853630
Н	1.6493790	4.3980140	-0.5621570
Н	1.6142590	6.0425200	0.1251970
Н	1.7313710	5.8135140	-1.6265090
Н	-2.5283220	-2.7612050	1.5207960
Н	-3.8917330	-1.9569930	2.3283140
Н	-2.4699160	0.4882880	-2.6612250
Н	-3.5673350	-0.2046670	-3.8769160
Н	-2.1014490	-1.0696090	-3.4004050
Н	-3.2605730	-3.1185500	-2.8131280
Н	-4.7988270	-2.4389230	-3.3529110
Н	-4.6618230	-3.1425430	-1.7326780
Н	-4.8983980	1.5086040	-2.3794600
Н	-5.4024410	1.6261050	-0.6866130
Н	-3.6765240	1.4779640	-1.0966640
Н	-6.4344570	-0.5078190	-2.7465670
Н	-6.4802260	-1.8091650	-1.5421060
Н	-6.9851530	-0.1823030	-1.0947660
Н	2.6326990	-2.5024790	1.3089170
Η	2.0906830	-3.8145290	2.3781100
Η	-0.9357660	-3.4913470	-2.5428960
Н	0.5278780	-3.1636130	-3.4655240
Н	-0.1959640	-4.7745240	-3.5444070
Н	2.9361080	-5.0449330	-1.4020550
Н	2.7242140	-3.8285620	-2.6726800
Η	2.2420020	-5.5043380	-2.9658430
Н	-1.6142590	-6.0425200	0.1251970
Н	-1.7313710	-5.8135140	-1.6265090
Η	-1.6493790	-4.3980140	-0.5621570
Н	0.2828210	-7.5533530	-0.2853630
Η	0.3865590	-7.2300690	-2.0231160
Η	1.8013720	-6.9938770	-0.9794250
Η	3.8917330	1.9569930	2.3283140
Η	2.5283220	2.7612050	1.5207960
Н	2.4699160	-0.4882880	-2.6612250

Η	3.5673350	0.2046670	-3.8769160
Η	2.1014490	1.0696090	-3.4004050
Η	3.2605730	3.1185500	-2.8131280
Η	4.6618230	3.1425430	-1.7326780
Η	4.7988270	2.4389230	-3.3529110
Η	3.6765240	-1.4779640	-1.0966640
Η	4.8983980	-1.5086040	-2.3794600
Η	5.4024410	-1.6261050	-0.6866130
Η	6.4802260	1.8091650	-1.5421060
Η	6.4344570	0.5078190	-2.7465670
Η	6.9851530	0.1823030	-1.0947660

	DF-LCCSD(T)/nZ		DF-LCCSD(T)-F12x/nZ-F12				
	//BP86/6-311G(d,p)		//BP86/6-311G(d,p)				
	D	а – Т	n =	= D	n =	= T	
	n - D	n-1	$\mathbf{x} = \mathbf{a}$	x = b	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	
[Li(Me ₄ cyclen)] ⁺	-698.661344313	-699.298840984	-699.594711147	-699.519898753	-699.608310964	-699.544191073	
[Na(Me ₄ cyclen)] ⁺	-853.135862699	-853.923083735	-854.259198314	-854.179747545	-854.266692098	-854.199363696	
[K(Me ₄ cyclen)] ⁺	-719.358685539	-720.057422842	-720.390565590	-720.310712547	-720.428913459	-720.358721335	
H ₂ O	-76.273692566	-76.335410597	-76.369582926	-76.362800477	-76.369611340	-76.364077428	
THF	-231.854728114	-232.058015901	-232.154841687	-232.131124135	-232.158971033	-232.138876337	
DEE	-233.054764075	-233.263988450	-233.364038770	-233.339435933	-233.367499423	-233.346906140	
МеОН	-115.452957120	-115.552202238	-115.602598990	-115.591335701	-115.603421151	-115.594145439	
DCM	-958.538896846	-958.680444966	-958.782919528	-958.765370885	-958.769928180	-958.754486508	
Li-H ₂ O-1a	-774.956581076	-775.656761471	-775.986863572	-775.905360639	-776.000831569	-775.931239310	
Li-THF-1a	-930.543347169	-931.385151829	-931.778816628	-931.680483259	-931.796694124	-931.712553260	
Li-DEE-1a	-931.741728457	-932.584884216	-932.981476185	-932.882274244	-932.999328793	-932.914664448	
Li-MeOH-1a	-814.137170356	-814.875409700	-815.221988107	-815.136033328	-815.236721998	-815.163384395	
Li-DCM-1a	-1657.212641072	-1657.991507983	-1658.390432901	-1658.298180051	-1658.391254636	-1658.311761968	
Na-H ₂ O-1a	-929.429022163	-930.280394566	-930.649930864	-930.563764618	-930.658200749	-930.585364946	
Na-THF-1a	-1085.015213923	-1086.006629451	-1086.440912850	-1086.337827457	-1086.452547392	-1086.365181044	
Na-DEE-1a	-1086.209660303	-1087.207131973	-1087.644711826	-1087.540767886	-1087.655403175	-1087.567508779	
Na-MeOH-1a	-968.610352030	-969.498202794	-969.884634594	-969.793972957	-969.892802175	-969.816184202	
Na-DCM-1a	-1811.689296362	-1812.618570754	-1813.057442872	-1812.960539100	-1813.051579361	-1812.968830491	
K-H ₂ O-1a	-795.648426134	-796.409217419	-796.777092975	-796.690481865	-796.816106517	-796.740437750	
K-THF-1a	-951.233706109	-952.134466292	-952.565924727	-952.462328939	-952.608445276	-952.518208844	
K-DEE-1a	-952.434171049	-953.340988409	-953.775090190	-953.670651775	-953.817873594	-953.727131397	
K-MeOH-1a	-834.828895004	-835.626958172	-836.011011630	-835.919883450	-836.050844207	-835.971409018	
K-DCM-1a	-1677.909983541	-1678.750360860	-1679.185912359	-1679.088528764	-1679.211956844	-1679.126346103	

Table S22: High level single-point energies (in Hartree) of the stationary points optimised using the BP86/6-311G(d,p) method. The ansatz 3*A(Fix,NoX) was used in the DF-LCCSD(T)-F12x/nZ-F12//BP86/6-311G(d,p) calculations.

	DF-LCCSD(T)/nZ		DF-LCCSD(T)-F12x/nZ-F12				
	//B3LYP/6-311G(d,p)		//B3LYP/6-311G(d,p)				
	n = D	n - T	n =	D	n =	= T	
	$\Pi = D$	$\Pi = 1$	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	
[Li(Me ₄ cyclen)] ⁺	-698.657411723	-699.300349219	-699.597583806	-699.522751102	-699.611460607	-699.547303482	
[Na(Me ₄ cyclen)] ⁺	-853.131360420	-853.924464614	-854.261994890	-854.182513547	-854.268929003	-854.201517636	
[K(Me ₄ cyclen)] ⁺	-719.354691073	-720.059684936	-720.393184522	-720.313300403	-720.433063945	-720.362855164	
H ₂ O	-76.273693171	-76.335649072	-76.369875175	-76.363100358	-76.369922596	-76.364391277	
THF	-231.853519413	-232.058584289	-232.155859433	-232.132139141	-232.160060591	-232.139957945	
DEE	-233.053452374	-233.264588112	-233.365071467	-233.340464791	-233.368615168	-233.348014797	
MeOH	-115.452668788	-115.552647075	-115.603209339	-115.591949032	-115.604055075	-115.594778973	
DCM	-958.538701452	-958.680768821	-958.783362612	-958.765821132	-958.770379415	-958.754939562	
Li-H ₂ O-2a	-774.952394383	-775.658698422	-775.990167079	-775.908659627	-776.004432654	-775.934809025	
Li-THF-2a	-930.540262134	-931.387639762	-931.782975797	-931.684631531	-931.801194732	-931.717014019	
Li-DEE-2a	-931.737898828	-932.587400123	-932.986132361	-932.886915363	-933.004009200	-932.919306264	
Li-MeOH-2a	-814.134224525	-814.877427661	-815.225659705	-815.139719212	-815.240755984	-815.167385536	
Li-DCM-2a	-1657.209997156	-1657.993596254	-1658.394853900	-1658.302540669	-1658.394937131	-1658.315398897	
Na-H ₂ O-2a	-929.424454351	-930.281917166	-930.652960423	-930.566773366	-930.660655022	-930.587742249	
Na-THF-2a	-1085.010336972	-1086.009172341	-1086.445110181	-1086.342001163	-1086.455838311	-1086.368356352	
Na-DEE-2a	-1086.204555198	-1087.210343910	-1087.649096373	-1087.545134782	-1087.660556961	-1087.572577003	
Na-MeOH-2a	-968.605721084	-969.500279018	-969.888175372	-969.797492021	-969.896408713	-969.819744362	
Na-DCM-2a	-1811.685200401	-1812.620826263	-1813.061397733	-1812.964482156	-1813.055361324	-1812.972558998	
K-H ₂ O-2a	-795.644361207	-796.410642882	-796.780313431	-796.693690945	-796.819154038	-796.743452518	
K-THF-2a	-951.228642492	-952.136366902	-952.569585171	-952.465955605	-952.612431816	-952.522152275	
K-DEE-2a	-952.429243893	-953.343108241	-953.779008279	-953.674534112	-953.822083981	-953.731300231	
K-MeOH-2a	-834.824603475	-835.628446085	-836.014907910	-835.923776225	-836.054340788	-835.974881284	
K-DCM-2a	-1677.906247255	-1678.751820457	-1679.189937564	-1679.092548751	-1679.216041041	-1679.130435093	

Table S23: High level single-point energies (in Hartree) of the stationary points optimised using the B3LYP/6-311G(d,p) method. The ansatz 3*A(Fix,NoX) was used in the DF-LCCSD(T)-F12x/nZ-F12//B3LYP/6-311G(d,p) calculations.

	DF-LCCSD(T)-	-F12x/DZ-F12		DF-LCCSD(T)-F12x/DZ-F12 //B3LYP/6-311G(d,p)		
	//BP86/6-3	G11G(d,p)				
	x = a	x = b		x = a	$\mathbf{x} = \mathbf{b}$	
[Li(Me ₄ cyclen)] ⁺	-699.711167649	-699.636355255	[Li(Me ₄ cyclen)] ⁺	-699.714968921	-699.640136217	
[Na(Me ₄ cyclen)] ⁺	-854.409716557	-854.330265789	[Na(Me ₄ cyclen)] ⁺	-854.413437314	-854.333955972	
[K(Me ₄ cyclen)] ⁺	-721.477551084	-721.397698041	[K(Me ₄ cyclen)] ⁺	-721.476914092	-721.397029973	
H ₂ O	-76.387017453	-76.380235004	H ₂ O	-76.387300956	-76.380526139	
THF	-232.196989326	-232.173271774	THF	-232.198259899	-232.174539607	
DEE	-233.405780914	-233.381178077	DEE	-233.407061182	-233.382454506	
МеОН	-115.625925067	-115.614661778	МеОН	-115.626611537	-115.615351231	
DCM	-958.979167438	-958.961618796	DCM	-958.979776949	-958.962235469	
DCM*	-960.802937949	-960.779048274	DCM*	-960.803392204	-960.779507975	
Li-H ₂ O-1a	-776.119426268	-776.037923335	Li-H ₂ O-2a	-776.123669997	-776.042162545	
Li-THF-1a	-931.936235669	-931.837902299	Li-THF-2a	-931.941567234	-931.843222967	
Li-DEE-1a	-933.138595786	-933.039393845	Li-DEE-2a	-933.144414564	-933.045197566	
Li-MeOH-1a	-815.360736615	-815.274781836	Li-MeOH-2a	-815.365399472	-815.279458980	
Li-DCM-1a	-1658.687020044	-1658.594767195	Li-DCM-2a	-1658.692969597	-1658.600656365	
Li-DCM-1a*	-1660.478472376	-1660.379864995	Li-DCM-2a*	-1660.485542965	-1660.386873161	
Na-H ₂ O-1a	-930.816896699	-930.730730452	Na-H ₂ O-2a	-930.820872364	-930.734685307	
Na-THF-1a	-1086.632812674	-1086.529727281	Na-THF-2a	-1086.638178341	-1086.535069322	
Na-DEE-1a	-1087.836281281	-1087.732337341	Na-DEE-2a	-1087.841808790	-1087.737847200	
Na-MeOH-1a	-970.057795782	-969.967134144	Na-MeOH-2a	-970.062328769	-969.971645418	
Na-DCM-1a	-1813.394875793	-1813.297972021	Na-DCM-2a	-1813.398791406	-1813.301875829	
K-DCM-1a	-1680.454316930	-1680.356933336	K-DCM-2a	-1680.454766614	-1680.357377801	

Table S24: High level single-point energies (in Hartree) of the stationary points optimised using the BP86/6-311G(d,p) and B3LYP/6-311G(d,p) methods. The default ansatz 3*A(Loc,Fix) was used in the DF-LCCSD(T)-F12x/DZ-F12 calculations.

* The $(n-1)s^2$ and $(n-1)p^6$ core electrons of Cl atom were correlated.

Table S25: Energies (in Hartree) of stationary points associated with reactions (A) and (B). The ansatz 3*A(Fix,NoX) was used in the DF-LCCSD(T)-F12x/nZ-F12//BP86/6-311G(d,p) calculations.

	BP86/	DF-LCCSD(T)/nZ		DF-LCCSD(T)-F12x/nZ-F12				
	6-311G(d,p)	//BP86/6-311G(d,p)		//BP86/6-311G(d,p)				
	E ^{zpe}	n = D	n = T	n = D		n = T		
				x = a	x = b	x = a	x = b	
[Li(Me ₄ cyclen)] ⁺	-700.280789	-698.66134431	-699.29884098	-699.59471115	-699.51989875	-699.60831096	-699.54419107	
[Na(Me ₄ cyclen)] ⁺	-855.045183	-853.13586270	-853.92308373	-854.25919831	-854.17974755	-854.26669210	-854.19936370	
[K(Me ₄ cyclen)] ⁺	-1292.727886	-719.35868554	-720.05742284	-720.39056559	-720.31071255	-720.42891346	-720.35872134	
Li ⁺	-7.275292	-7.25789343	-7.27472806	-7.27997110	-7.27883481	-7.27998588	-7.27898629	
Na ⁺	-162.082228	-161.77610539	-161.94472463	-161.98942460	-161.98384061	-161.98361329	-161.97935934	
K ⁺	-599.799323	-28.03226568	-28.11635202	-28.15300272	-28.14685464	-28.18080180	-28.17351793	
Me ₄ cyclen	-692.840767	-691.23604195	-691.84903213	-692.14252466	-692.06882008	-692.15328858	-692.09049513	
[H(Me ₄ cyclen)] ⁺	-693.250149	-691.66117327	-692.27710636	-692.56919651	-692.49546892	-692.58013684	-692.51729561	
H ₂ O	-76.426915	-76.27369257	-76.33541060	-76.36958293	-76.36280048	-76.36961134	-76.36407743	
H_3O^+	-76.696629	-76.54448193	-76.61192601	-76.64285761	-76.63633802	-76.64444764	-76.63910595	

References

S1. (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.

S2. (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (b) C. Lee, W. Yang, and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.

S3. (a) H. B. Schlegel, *J. Comput. Chem.* 1982, **3**, 214; (b) H. B. Schlegel, *In: Modern Electronic Structure Theory*; D. R. Yarkony, Ed., World Scientific Publishing: Singapore, 1995, 459.

S4. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. Pople, *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

S5. (a) J. M. Dyke, W. Levason, M. E. Light, D. Pugh, G. Reid, H. Bhakhoa, P. Ramasami, and L. Rhyman, *Dalton Trans.*, 2015, 13853; (b) H. Bhakhoa, L. Rhyman, E. P. F. Lee, P. Ramasami, and J. M. Dyke, *Chem. Eur. J.*, 2016, **22**, 4469; (c) M. J. D. Champion, J. M. Dyke, W. Levason, M. E. Light, D. Pugh, H. Bhakhoa, L. Rhyman, P. Ramasami, and G. Reid, *Inorg. Chem.*, 2015, **54**, 2497.

S6. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.

S7. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.

S8. M. J. Frisch et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

S9. (a) A. E. Reed, R. B. Weinstock, and F. Weinhold, *J. Chem. Phys.*, 1985, 83, 735; (b) A.
E. Reed, L. A. Curtiss, and F. Weinhold, *Chem. Rev.*, 1988, 88, 899.

S10. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1, 2001, University of Wisconsin-Madison.

S11. (a) A. J. Achazi, L. K. S. v. Krbek, C. A. Schalley, and B. Paulus, *J. Comput. Chem.*, 2016, **37**, 18; (b) E. Goll, T. Leininger, F. R. Manby, A. Mitrushchenkov, H.-J. Werner, and H. Stoll, *Phys. Chem. Chem. Phys.*, 2008, **10**, 3353.

S12. H.-J. Werner and M. Schütz, J. Chem. Phys., 2011, 135, 144116.

S13. T. B. Adler and H.-J. Werner, J. Chem. Phys., 2011, 135, 144117.

S14. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, MOLPRO, Versions 2010.1 and 2015.1, a package of *ab initio* programs, see http://www.molpro.net (accessed September 2017).

S15. R. Polly, H.-J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys., 2004, 102, 2311.

S16. (a) H.-J. Werner, T. B. Adler, and F. R. Manby, *J. Chem. Phys.*, 2007, **126**, 164102; (b) G. Knizia and H.-J. Werner, *J. Chem. Phys.*, 2008, **128**, 154103.

S17. https://www.molpro.net/info/2015.1/doc/quickstart/node51.html (accessed September 2017).

S18. (a) T. H. Dunning, Jr., *J. Chem. Phys.*, 1989, **90**, 1007; (b) D. E. Woon and T. H. Dunning, Jr., *J. Chem. Phys.*, 1993, **98**, 1358; (c) R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, *J. Chem. Phys.*, 1992, **96**, 6796.

S19. (a) F. Weigend, A. Köhn, and C. Hättig, Efficient J. Chem. Phys. 2002, **116**, 3175; (b) C. Hättig Phys. Chem. Chem. Phys., 2005, **7**, 59.

S20. (a) F. Weigend, *Phys. Chem. Chem. Phys.*, 2002, **4**, 4285; (b) http://www.molpro.net/info/basis.php?version=current&describe=1&element=O&basis=aug-cc-pVDZ-0JKFI (accessed September 2017)

S21. K. A. Peterson, T. Adler, and H.-J. Werner, J. Chem. Phys., 2008, 128, 084102.

S22. K. E. Yousaf and K. A. Peterson, J. Chem. Phys., 2008, 129, 184108.

S23. B. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., and A. K. Wilson, *Theor. Chem. Acc.*, 2011, **128**, 69.

S24. J. G. Hill and K. A. Peterson, Phys. Chem. Chem. Phys., 2010, 12, 10460.

S25. F. Weigend, J. Comput. Chem., 2008, 29, 167.

S26. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.

S27. V. Navrátil, V. Klusák, and L. Rulíšek, Chem. Eur. J., 2013, 19, 16634.

S28. (a) F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, *Chem. Phys. Lett.* 1998, **294**, 143; (b)

http://www.molpro.net/info/basis.php?version=current&describe=1&element=H&basis=def2

-TZVPP-MP2FI (accessed September 2017); (c) A. Hellweg, C. Hättig, S. Höfener, and W. Klopper, *Theor. Chem. Acc.*, 2007, **117**, 587.

S29.

http://www.molpro.net/info/basis.php?version=current&describe=1&element=H&basis=def2 -TZVPP-MP2FI (accessed September 2017).

S30. (a) I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, *J. Chem. Phys.*, 2005, **122**, 104103; (b)

http://www.molpro.net/info/basis.php?version=current&describe=1&element=K&basis=ECP 10MDF (accessed September 2017).

S31. G. Knizia, Dissertation, 2010; http://www.molpro.net/info/basis.php?version=current&describe=1&element=Cl&basis=def 2-TZVPP OPT (accessed September 2017).

S32. (a) R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam, and G. Allen, *J. Comput. Sci.*, 2014, **5**, 576; (b) N. Shen, Y. Fan, and S. Pamidighantam, *J. Comput. Sci.*, 2014, **5**, 576; (c) This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.

S33. J. Z. A. Laloo, N. Laloo, L. Rhyman, and P. Ramasami, J. Comput. Aided Mol. Des., 2017, **31**, 667.

S34. (a) S. Shinoda, *Chem. Soc. Rev.*, 2013, **42**, 1825; (b) S. Buøen, J. Dale, P. Groth, and J. Krane, *J. Chem. Soc., Chem. Comm.*, 1982, 1172; (c) K. Igarashi, T. Nogamia, and T. Ishida, *Chem. Comm.*, 2007, 501; (d) S. Standfuss, T. P. Spaniol, and J. Okuda, *Eur. J. Inorg. Chem.*, 2010, 2987; (e) H. Ito, H. Tsukube, and S. Shinoda, *Chem. Eur. J.*, 2013, **19**, 3330 and references therein; (f) H. Ito and S. Shinoda, *Chemistry Open*, 2014, **3**, 238 and references therein; (g) X. Zhang, J. Yin, and J. Yoon, *Chem. Rev.*, 2014, **114**, 4918; (h) E. Kriemen, M. Holzapfel, E. Ruf, J. Rehbein, and W. Maison, *Eur. J. Inorg. Chem.*, 2015, 5368.

S35. (a) D. Sakow, D. Baabe, B. Böker, O. Burghaus, M. Funk, C. Kleeberg, D. Menzel, C. Pietzonka, and M. Bröring, *Chem. Eur. J.*, 2014, **20**, 2913; (b) The cavity sizes were estimated as the sum of the two triangle planes {N1–N2–N3} and {N3–N4–N1}, using the Heron's formula.

S36. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst., 1976, 32, 751.

S37. (a) N. Kuze, N. Kuroki, H. Takeuchi, T. Egawa, and S. Konaka, J. Mol. Struct., 1993, 301, 81; (b) N. Kuze, E. Kojima, H. Fujiwara, H. Takeuchi, T. Egawa, and S. Konaka, J. Mol. Struct., 1996, 375, 231.

S38. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar, *J. Phys. Chem. A*, 2009, **113**, 5806.

S39. (a) M. T. Rodgers and P. B. Armentrout, *Chem. Rev.*, 2016, **116**, 5642; (b) J. J. Fifen and N. Agmon, *J. Chem. Theory Comput.*, 2016, **12**, 1656; (c) P. Kumar, A. D. Kulkarni, and S. Yashonath, *J. Phys. Chem. B*, 2015, **119**, 10921.

S40. (a) T. Miteva, J. Wenzel, S. Klaiman, A. Dreuwb, and K. Gokhberg, *Phys. Chem. Chem. Phys.*, 2016, **18**, 16671; (b) E. López, J. M. Lucas, J. de Andrés, M. Albertí, J. M. Bofill, and A. Aguilar, *J. Phys. Chem. A*, 2016, **120**, 4758; (c) M. Soniat, D. M. Rogers, and S. B. Rempe, *J. Chem. Theory Comput.*, 2015, **11**, 2958; (d) C. D. Daub, P.-O. Åstrand, and F. Bresme, *J. Phys. Chem. A*, 2015, **119**, 4983.

S41. (a) Y. Valadbeigi, *Comp. Theor. Chem.*, 2016, **1091**, 169; (b) R. L. Jarek, T. D. Miles, M. L. Trester, S. C. Denson, and S. Koo Shin, *J. Phys. Chem. A*, 2000, **104**, 2230.

S42. J. Bloomfield, E. Davies, P. Gatt, and S. Petrie, J. Phys. Chem. A, 2006, 110, 1134.

S43. B. Sharma, Y. I. Neela, and G. N. Sastry, J. Comput. Chem., 2016, 37, 992.

S44. J. L. Llanio-Trujillo, J. M. C. Marques, and F. B. Pereira, *Comp. Theor. Chem.*, 2013, 1021, 124.

S45. F. Zhu, H. Zhou, Y. Zhou, J. Miao, C. Fang, Y. Fang, P. Sun, H. Ge, and H. Liu, *Eur. Phys. J. D*, 2016, **70**, 246.

S46. C.-C. Wu, Y.-S. Wang, C. Chaudhuri, J. C. Jiang, and H.-C. Chang, *Chem. Phys. Lett.*, 2004, **388**, 457.

S47. A. García-Muruais, E. M. Cabaleiro-Lago, J. M. Hermida-Ramón, and M. A. Ríos, *Chem. Phys.*, 2000, **254**, 109.

S48. C. Faralli, M. Pagliai, G. Cardini, and V. Schettino, Theor. Chem. Acc., 2007, 118, 417.

S49. C. Cézard, B. Bouvier, V. Brenner, M. Defranceschi, P. Millié, J. M. Soudan, and J. P. Dognon, *J. Phys. Chem. B*, 2004, **108**, 1497.

S50. E. M. Cabaleiro-Lago and J. Rodríguez-Otero, J. Phys. Chem. A, 2002, 106, 7195.

S51. M. Saiful Islam, R. A. Pethrick, and D. Pugh, J. Phys. Chem. A, 1998, 102, 2201.

S52. (a) M. K. Kesharwai, B. Brauer, and J. M. L. Martin, J. Phys. Chem. A, 2015, 119, 1701;

(b) I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput., 2010, 6, 2872.

S53. H. Osseili, D. Mukherjee, T. P. Spaniol, and J. Okuda, Chem. Eur. J., 2017, 23, 1.