Electronic Supplementary Information

Synthesis and reactivity of thiolate-bridged multi-iron complexes

supported by cyclic (alkyl)(amino)carbene

Yanpeng Zhang,^a Tao Mei,^a Dawei Yang,^{*,a} Yixin Zhang,^a Baomin Wang^a and Jingping Qu^{*,a,b}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China

^bKey Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China

*E-mail: qujp@dlut.edu.cn yangdw@dlut.edu.cn

Contents:

Table S1. Crystallographic data for 1 and 2	S3
<i>Table S2</i> . Crystallographic data for 3 •2CH ₂ Cl ₂ and 4	
<i>Table S3</i> . Crystallographic data for 5 and 6	S5
Figure S1. ORTEP diagram of 1	S6
Table S4. Selected bond distances (Å) and bond angles (°) for 1	S6
Figure S2. ORTEP diagram of 2	
Table S5. Selected bond distances (Å) and bond angles (°) for 2	
<i>Figure S3</i> . ORTEP diagram of 3 •2CH ₂ Cl ₂	
Table S6. Selected bond distances (Å) and bond angles (°) for 3 •2CH ₂ Cl ₂	
Figure S4. ORTEP diagram of 4	
Table S7. Selected bond distances (Å) and bond angles (°) for 4	S9
Figure S5. ORTEP diagram of 5	S10
Table S8. Selected bond distances (Å) and bond angles (°) for 5	S10
Figure S6. ORTEP diagram of 6	S11
Table S9. Selected bond distances (Å) and bond angles (°) for 6	
<i>Figure S7</i> . The ¹ H NMR spectrum of 1 in THF-d ₈	
Figure S8. The ¹ H NMR spectrum of 2 in THF-d ₈	
<i>Figure S9</i> . The ¹ H NMR spectrum of 3 in THF-d ₈	
<i>Figure S10</i> . The ¹ H NMR spectrum of 4 in THF-d ₈	
Figure S11. The ¹ H NMR spectrum of 5 in CD ₂ Cl ₂	S14
<i>Figure S12</i> . The ¹ H NMR spectrum of 6 in THF-d ₈	S14
<i>Figure S13</i> . The ¹ H NMR spectrum of 7 in THF-d ₈	
Figure S14. The IR (KBr) spectrum of 1	
Figure S15. The IR (KBr) spectrum of 2	S16
Figure S16. The IR (KBr) spectrum of 3	S16
Figure S17. The IR (KBr) spectrum of 4	S17
Figure S18. The IR (KBr) spectrum of 5	S17
Figure S19. The IR (KBr) spectrum of 6	S18
Figure S20. The IR (KBr) spectrum of 7	S18

	1	2
Formula	$C_{40}H_{62}Br_4Fe_2N_2$	$C_{40}H_{62}Cl_4Fe_2N_2$
Formula weight	1002.26	824.42
Crystal dimensions (mm ³)	$0.32 \times 0.31 \times 0.22$	$0.31 \times 0.27 \times 0.22$
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)/n	P2(1)/n
a (Å)	9.2767(2)	9.1376(11)
b (Å)	14.5310(4)	14.5702(17)
c (Å)	15.8281(4)	15.7911(18)
α (°)	90.00	90.00
β (°)	90.4710(10)	90.838(3)
γ (°)	90.00	90.00
Volume (Å ³)	2133.55(9)	2102.1(4)
Ζ	2	2
<i>T</i> (K)	173(2)	301(2)
D_{calcd} (g cm ⁻³)	1.560	1.302
$\mu (\mathrm{mm}^{-1})$	4.454	0.973
F (000)	1016	872
No. of rflns. collected	26713	12173
No. of indep. rflns. $/R_{int}$	3741 / 0.0275	3693 / 0.0606
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	3385	2271
Data / restraints / parameters	3741 / 0 / 217	3693 / 0 / 217
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0323 / 0.0917	0.0570 / 0.1539
R_1 / wR_2 (all data)	0.0363 / 0.0936	0.1048 / 0.1674
GOF (on F^2)	1.021	1.049
Largest diff. peak and hole (e $Å^{-3}$)	1.406 / -0.836	0.411 / -0.630
CCDC	1570137	1544295

Table S1. Crystallographic data for 1 and 2

	3• 2CH ₂ Cl ₂	4
Formula	$C_{44}H_{72}Br_2Cl_4Fe_2N_2S_2$	$C_{44}H_{72}Br_2Fe_2N_2S_2$
Formula weight	1106.48	964.68
Crystal dimensions (mm ³)	$0.33 \times 0.25 \times 0.21$	$0.34 \times 0.32 \times 0.28$
Crystal system	Orthorhombic	Triclinic
Space group	Pbca	P-1
a (Å)	10.487(4)	9.2020(7)
b (Å)	18.279(6)	10.7924(10)
c (Å)	28.035(10)	12.6760(10)
α (°)	90.00	85.581(4)
β (°)	90.00	72.995(4)
γ (°)	90.00	78.723(4)
Volume (Å ³)	5374(3)	1180.33(17)
Ζ	4	1
<i>T</i> (K)	300(2)	233(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.367	1.357
$\mu (\mathrm{mm}^{-1})$	2.333	2.426
F (000)	2288	504
No. of rflns. collected	73129	24257
No. of indep. rflns. $/R_{int}$	4726 / 0.1075	4142 / 0.0575
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	3058	3017
Data / restraints / parameters	4726 / 0 / 253	4142 / 0 / 235
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]$	0.0704 / 0.1950	0.0420 / 0.0900
R_1 / wR_2 (all data)	0.1171 / 0.2143	0.0725 / 0.0972
GOF (on F^2)	1.047	1.016
Largest diff. peak and hole (e $Å^{-3}$)	1.259 / -0.861	0.677 / -0.339
CCDC	1570135	1544296

Table S2. Crystallographic data for $3 \cdot 2 CH_2 Cl_2$ and 4

	5	6
Formula	$C_{40}H_{63}Br_3Fe_4N_2S_4$	$C_{42}H_{68}Fe_2N_8S_2$
Formula weight	1163.29	860.86
Crystal dimensions (mm ³)	$0.33 \times 0.26 \times 0.21$	$0.29 \times 0.26 \times 0.21$
Crystal system	Monoclinic	Triclinic
Space group	P2(1)	P-1
a (Å)	10.0062(10)	9.1221(7)
b (Å)	16.5247(16)	9.6527(8)
c (Å)	15.3223(15)	14.2111(11)
α (°)	90.00	91.2950(10)
β (°)	100.251(3)	104.5310(10)
γ (°)	90.00	110.9850(10)
Volume (Å ³)	2493.1(4)	1122.17(15)
Ζ	2	1
<i>T</i> (K)	304(2)	220(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.550	1.274
$\mu (\mathrm{mm}^{-1})$	3.740	0.778
F (000)	1180	460
No. of rflns. collected	26133	19905
No. of indep. rflns. $/R_{int}$	8713 / 0.0457	4588 / 0.0402
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	7476	4104
Data / restraints / parameters	8713 / 1 / 479	4588 / 89 / 290
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]$	0.0337 / 0.0766	0.0650 / 0.1594
R_1 / wR_2 (all data)	0.0442 / 0.0797	0.0712 / 0.1641
GOF (on F^2)	0.997	1.039
Largest diff. peak and hole (e $Å^{-3}$)	0.600 / -0.562	1.741 / -1.134
Flack parameter	0.127(7)	_
CCDC	1570210	1570141

Table S3. Crystallographic data for **5** and **6**

Figure S1. ORTEP diagram of 1

Table S4. Selected bond distances (Å) and bond angles (°) for 1

Distances (Å)			
Fe1…Fe1A	3.432(8)	Fe1–C1	2.080(3)
Fe1-Br1	2.379(6)	Fe1–Br2	2.535(6)
Fe1–Br2A	2.526(7)	C1-N1	1.308(4)
Angles (°)			
Fe1–Br2–Fe1A	85.4(2)	Br2–Fe1–Br2A	94.6(2)
C1–Fe1–Br1	122.3(8)	N1-C1-Fe1	127.3(2)
Torsion angles (°)			
Fe1-Br2Br2A-Fe1A	0.0(2)	Br2–Fe1Fe1A–Br2A	0.0(2)
C1–Fe1Br1–Fe1A	0.4(6)		
Dihedral angle (°)			
C1Br1Fe1–Fe1Br2Br2A	88.5(4)		

Figure S2. ORTEP diagram of **2**

Table S5. Selected bond distances (Å) and bond angles (°) for ${\bf 2}$

Distances (Å)			
Fe1…Fe1A	3.355(3)	Fe1–C1	2.083(4)
Fe1–Cl1	2.224(2)	Fe1–Cl2	2.381(1)
Fe1–Cl2A	2.414(3)	C1-N1	1.321(5)
Angles (°)			
Fe1-Cl2-Fe1A	88.8(4)	Cl2-Fe1-Cl2A	91.2(4)
C1–Fe1–Cl1	121.8(1)	N1-C1-Fe1	127.3(3)
Torsion angles (°)			
Fe1-Cl2Cl2A-Fe1A	0.0(0)	Cl2-Fe1Fe1A-Cl2A	0.0(0)
C1-Fe1Cl1-Fe1A	3.0(7)		
Dihedral angle (°)			
C1Cl1Fe1–Fe1Cl2Cl2A	88.3(7)		

Figure S3. ORTEP diagram of **3**•2CH₂Cl₂

Two CH₂Cl₂ molecules and all hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability).

<i>Table S6.</i> Selected bond distances	(Å)) and bond	angles	(°)) for	3•2	2CH	$_2C$	12
--	-----	------------	--------	-----	-------	-----	-----	-------	----

Distances (Å)			
Fe1…Fe1A	3.166(2)	Fe1–C1	2.067(6)
Fe1-Br1	2.400(1)	Fe1-S1	2.407(2)
Fe1–S1A	2.388(2)	C1-N1	1.305(8)
Angles (°)			
Fe1–S1–Fe1A	82.6(7)	S1–Fe1–S1A	97.4(7)
C1–Fe1–Br1	120.3(2)	N1-C1-Fe1	129.1(4)
Torsion angles (°)			
Fe1-S1S1A-Fe1A	0.0(0)	S1–Fe1Fe1A–S1A	0.0(0)
C1-Fe1Br1-Fe1A	3.8(2)		
Dihedral angle (°)			
C1Br1Fe1-Fe1S1S1A	84.5(8)		

Figure S4. ORTEP diagram of 4

Table S7. Selected bond distances (Å) and bond angles (°) for 4

Distances (Å)			
Fe1…Fe1A	3.215(7)	Fe1–C1	2.064(4)
Fe1-Br1	2.396(6)	Fe1–S1	2.410(5)
Fe1–S1A	2.383(9)	C1-N1	1.317(5)
Angles (°)			
Fe1–S1–Fe1A	84.2(4)	S1–Fe1–S1A	95.8(4)
C1–Fe1–Br1	118.5(0)	N1-C1-Fe1	130.7(3)
Torsion angles (°)			
Fe1-S1S1A-Fe1A	0.0(0)	S1-Fe1Fe1A-S1A	0.0(0)
C1–Fe1Br1–Fe1A	3.9(3)		
Dihedral angle (°)			
C1Br1Fe1-Fe1S1S1A	86.8(1)		

Figure S5. ORTEP diagram of 5

Hydrogen atoms and Me₂-cAACH⁺ cation are omitted for clarity (thermal ellipsoids shown at 50% probability).

Table S8. Selected bond distances	(Å) and bond	angles (°	') for 5
-----------------------------------	----	------------	-----------	-----------------

Distances (Å)			
Fe1–Fe2	2.751(3)	Fe1–Fe3	2.763(8)
Fe1–Fe4	2.754(3)	Fe2–Fe3	2.742(9)
Fe2–Fe4	2.744(6)	Fe3–Fe4	2.736(5)
Fe1–C1	2.064(4)	C1-N1	1.304(5)
Fe1-S1	2.262(4)	Fe1-S2	2.279(7)
Fe1–S4	2.270(8)	Fe2-S1	2.281(2)
Fe2-S3	2.289(2)	Fe2–S4	2.268(4)
Fe3-S2	2.277(6)	Fe3-S3	2.257(8)
Fe3-S4	2.277(7)	Fe4-S1	2.289(0)
Fe4–S2	2.276(5)	Fe4-S3	2.288(1)
Fe2–Br1	2.352(9)	Fe3–Br2	2.342(5)
Fe4–Br3	2.331(8)		
Angles (°)			
Fe1–S1–Fe2	74.5(3)	Fe1–S1–Fe4	74.4(8)
Fe1-S2-Fe3	74.6(7)	Fe1-S2-Fe4	74.3(9)
Fe1–S4–Fe2	74.6(2)	Fe1–S4–Fe3	74.8(4)
S1–Fe1–S2	103.9(4)	S1–Fe1–S4	103.7(0)
S2-Fe1-S4	103.3(0)	S1-Fe1-C1	113.0(4)
S2–Fe1–C1	124.1(7)	S4–Fe1–C1	106.6(3)

Figure S6. ORTEP diagram of 6

Table S9. Selected bond distances (Å) and bond angles (°) for 6

Distances (Å)			
Fe1…Fe1A	3.109(7)	Fe1-C1	2.037(3)
C1-N1	1.300(4)	Fe1-S1	2.381(7)
Fe1–S1A	2.411(4)	Fe1-N2	1.934(7)
N2-N3	1.134(10)	N3-N4	1.206(11)
Angles (°)			
Fe1–S1–Fe1A	83.5(3)	Fe1–S1A–Fe1A	83.5(3)
S1–Fe1–S1A	96.5(3)	S1-Fe1A-S1A	96.5(3)
Fe1-N2-N3	155.1(7)	N2-N3-N4	161.8(10)

Figure S7. The ¹H NMR spectrum of $\mathbf{1}$ in THF-d₈

Figure S13. The ¹H NMR spectrum of 7 in THF-d₈

Figure S14. The IR (KBr) spectrum of 1

Figure S16. The IR (KBr) spectrum of 3

Figure S18. The IR (KBr) spectrum of 5

Figure S20. The IR (KBr) spectrum of 7

