Supporting Information

Synthesis and ORR Electrocatalytic Activity of Mixed Mn-Co oxides

Derived from Divalent Metal-based MIL-53 Analogues

Lili Yao ^{a,c}, Wenxiu Yang ^{c,d}, Huiling Liu ^b, Jianbo Jia ^d, Guohua Wu ^{e,□},

Dan Liu^b, Ting Liu^{a,c}, Taixing Tan^{a,c}, Cheng Wang^b

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China

^b Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New-Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300084, P.R. China, E-mail: cwang@tjut.edu.cn

^c University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^d State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China

^e College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, P. R. China, E-mail: georgew511@hotmail.co.uk

Fig. S1 Structural unit (left) and three dimensional open structure (right) of Mn/Co MIL-53. The hydrogen atoms are omitted for clarity. The occluded guest molecules in the right structure are DMF with ball-and-stick and space-filling models (quoted with permission from Ref. S1. Copyright 2010 American Chemical Society).

Fig. S2 SEM images of (a) Co-MOF, (b) Co2Mn-MOF, (c) CoMn-MOF, (d) CoMn2-MOF, (e) CoMn4-MOF and (f) Mn-MOF, respectively.

Fig. S3 Elemental mappings of (a) Co2Mn-MOF, (b) CoMn-MOF, (c) CoMn2-MOF and (d) CoMn4-MOF.

Fig. S4 TGA curves of Co-MOF, Co2Mn-MOF, CoMn-MOF, CoMn2-MOF, CoMn4-MOF and Mn-MOF.

Fig. S5 SEM images of as-obtained metal oxides: (a) Co_3O_4 , (b) Co2Mn-O, (c) CoMn-O, (d) CoMn2-O, (e) CoMn4-O and (f) Mn_2O_3 .

Fig. S6 Low-magnification TEM and HRTEM images of (a and b) Co_3O_4 and (c and d) Mn_2O_3 , respectively.

Fig. S7 Elemental mapping patterns of EDX spectra for as-obtained (a) Co2Mn-O, (b) CoMn-O, (c) CoMn2-O and (d) CoMn4-O, respectively.

Fig. S8 Nitrogen adsorption-desorption isotherms of as-prepared metal oxides: (a) Co_3O_4 , (b) Co2Mn-O, (c) CoMn-O, (d) CoMn2-O, (e) CoMn4-O and (f) Mn_2O_3 , respectively.

Fig. S9 (a) RDE voltammograms of Co2Mn-O in O_2 -saturared 0.1 M KOH at different rotation rates and (b) corresponding Koutecky-Levich plots at potential 0.3 to 0.6 V (vs. RHE).

Fig. S10 (a) H_2O_2 yields and (b) electron transfer number of CoMn-O, CoMn2-O, CoMn4-O, Co_3O_4 , Mn_2O_3 and CMK-3, respectively.

Fig. S11 XPS spectra of (a-c) CoMn-O, (d-f) CoMn2-O and (g-i) CoMn4-O for Mn 2p, Co2p and O 1s, respectively.

Fig. S12 CVs for different samples with scan rate ranging from 1 to 10 mV s⁻¹. (a) Co2Mn-O, (b) CoMn-O, (c) CoMn2-O, (d) CoMn4-O, (e) Co₃O₄, (f) Mn_2O_3 and (g) CMK-3.

Catalyst	E _{1/2} (V vs. RHE)	DLCD (mA cm ⁻²)	Reference
Co2Mn-O nanoparticles	0.772	6.3	This work
CoMn-O nanoparticles	0.756	5.5	This work
CoMn2-O nanoparticles	0.740	5.7	This work
CoMn4-O nanoparticles	0.765	6.0	This work
Mn ₂ O ₃ nanoparticles	0.765	5.3	This work
Co ₃ O ₄ nanoparticles	0.710	5.2	This work
CMK-3 alone	0.753	4.9	This work
Co ₃ O ₄ /2.7Co ₂ MnO ₄ nanocomposite	~0.700	~5.2	Ref. S2
cubic-Co ₂ MnO ₄ nanorods	~0.720	~5.9	Ref. S3
tetragonal-CoMn ₂ O ₄ microspheres	~0.700	~5.5	Ref. S3
NiCoMnO ₄ /N-rGO ^a	0.750	~5.6	Ref. S4
NiCo ₂ O ₄ /N-rGO	-0.340*	4.2	Ref. S5
CaMn ₂ O ₄ nanorods	-0.250*	~4.3	Ref. S6
cubic-CoMn ₂ O ₄ ^b	~0.740	~4.4	Ref. S7
mesoporous-MnCo ₂ O ₄ ^a	-0.220**	~5.3	Ref. S8
$CoMn_2O_4/C^a$	0.760	~5.7	Ref. S9
Mn _{0.4} Co _{2.6} O ₄	0.772	~5.5	Ref. S10
Co-Mn oxides with mixed phases	~-0.190**	~0.32	Ref. S11
MnCo ₂ O ₄ /N-rmGO	~0.820	~5.5	Ref. S12

Table S1 ORR activities of different Co/Mn related electrocatalysts.

^aThe rotating rate of electrode is 15000 rpm.

^bThe rotating rate of electrode is 900 rpm.

*These potentials are versus SCE.

**These potentials are versus Ag/AgCl.

References

- S1: G. H. Xu, X. G. Zhang, P. Guo, C. L. Pan, H. J. Zhang and C. Wang, J. Am. Chem. Soc., 2010, 132, 3656.
- S2: D. D. Wang, X. Chen, D. G. Evans and W. S. Yang, Nanoscale, 2013, 5, 5312.
- S3: H. C. Yang, F. Hu, Y. J. Zhang, L. Y. Shi and Q. B. Wang, Nano Res., 2016, 9(1): 207.
- S4: A. Pendashteh, J. Palma, M. Anderson and R. Marcilla, *Appl. Catal. B: Environ.*, 2017, 201, 241.
- S5: H. Zhang, H. Y. Li, H. Y. Wang, K. J. He, S. Y. Wang, Y. G. Tang and J. J. Chen, J. Power Sources, 2015, 280, 640.
- S6: J. Du, Y. D. Pan, T. R. Zhang, X. P. Han, F. Y. Cheng and J. Chen, J. Mater. Chem., 2012, 22, 15812.
- S7: C. Li, X. P. Han, F. Y. Cheng, Y. X. Hu, C. C. Chen and J. Chen, Nat. Commun., 2015, 6, 7345.
- S8: T. Y. Ma, Y. Zheng, S. Dai, M. Jaroniec and S. Z. Qiao, J. Mater. Chem. A, 2014, 2, 8676.
- S9: P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser and M. Driess, *ChemSusChem*, 2015, **8**, 164.

- S10: E. Lee, J. H. Jang and Y. U. Kwon, J. Power Sources, 2015, 273, 735.
- S11: F. Y. Cheng, J. A. Shen, B. Peng, Y. D. Pan, Z. L. Tao and J. Chen, Nat. Chem., 2011, 3, 79.
- S12: Y. Y. Liang, H. L. Wang, J. G. Zhou, Y. G. Li, J. Wang, T. Regier and H. J. Dai, J. Am. Chem. Soc., 2012, 134, 3517.