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1. General materials and methods

All reagents and starting materials were purchased from Sigma-Aldrich and used without
further purification. The zinc(II)-templated trefoil knot (Zn-TK) and the cadmium(II)-templated
trefoil knot (Cd-TK) were synthesized as previously reported.!> 2 Thin-layer chromatography
(TLC) was performed on silica gel 60 F254 (E. Merck). The plates were inspected with UV light.
Column chromatography was performed on silica gel 60F (Merck 9385, 0.040-0.063 mm).
Routine nuclear magnetic resonance (NMR) spectra were recorded at 25 °C on a Bruker Avance
III spectrometer, with working frequencies of 600 and 500 MHz for 'H, and 151.0 and 125.0 MHz
for 3C nuclei. All chemical shifts are reported in ppm relative to the signals corresponding to the
residual non-deuterated solvents (CD3CN: & = 1.94 ppm, CD;0D: & = 3.31 ppm) and deuterated
water was calibrated using an internal standard 1% TMS.? All 13C spectra were recorded with the
simultaneous decoupling of proton nuclei. Coupling constant values (J) are given in hertz (Hz).
The multiplicity of the proton spectrum is abbreviated in the following way: s (singlet), d (doublet),
dd (doublet of doublets), t (triplet), q (quartet), qt (quintet), sx (sextet), m (multiplet) and a wide
signal is preceded by br (broad). High resolution mass spectrometry (HRMS) was performed using
an Agilent 6540 UHA Accurate Mass Q-TOF / LC - MS-spectrometer in the positive mode and an

acetonitrile/water gradient was used with a C-18 column.



2. Transformation of Zn-TK into Zn-|2]C
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Deuterated water (D,0) solutions (0.85 mM, 1.7 mM and 3.4 mM) of the zinc-containing trefoil
knot were placed in an NMR tube and heated (conventionally) to 90 °C. The progress of the
reaction was monitored by 'H NMR spectroscopy at room temperature and regular time intervals.
After reaction completion, Zn-[2]C was precipitated upon addition of a mixed solvent of
isopropanol and THF (2:1). The precipitate was washed four times with the hot solvent mixture to
remove side-products, including open chain zinc complexes which were estimated to amount to
less than 10 mol % of the total product mixture. The final precipitate was dried under vacuum for

4h and characterized by 'H and '*C NMR spectroscopy and HRMS.

Zn-[2]C: Yield: 89 %. 'H NMR (500MHz, D,0, 25 °C): §5.03 (s, 8H, Ar-CH.), 5.43 (s, 8H, Ar-
CH,), 6.60 (ABq, 16H, J = 12 Hz, Ar-H), 7.97 (d, 4H, J = 4.5 Hz, Ar-H), 8.10 (s, 4H, Ar-H), 8.37
(s, br, 4H, Ar-H), 8.64 (d, 4H, J = 8.2 Hz, Ar-H), 8.94 (t, 2H, J = 7.8 Hz, Ar-H), 9.16 (s, 4H, Ar-
H); 3C NMR (75 MHz, MeOD-dy, 25 °C): 563.6, 68.3, 116.6, 117.7 (q, 2Jc.r = 255 Hz, TFA),
122.1, 127.0, 128.0, 129.7, 130.1, 131.0, 135.4, 148.4, 148.8, 148.9, 152.9, 158.4, 161.7 (q, Jc.r

= 34.5 Hz. TFA); MS (ESI-HRMS): m/z Caled for (C70HsgFeN 00sZn2)2: 704.146 [M—2TFAJ2*,



found: 704.147 [M—2TFA]**, m/z Calcd for (CsgHssF3N0OsZn,)**: 431.769 [M—3TFA]**, found:

431.768 [M=3TFAJ*.

Monitoring the H;, and H; protons of Zn-[2]C

The h and j protons of Zn-TK and Zn-[2]C were monitored in order to follow the evolution of the
interconversion process. The mole-percent formation of each topological structure was deduced
from the integrals of its corresponding protons and by using the rough approximation that the two
structures were the only ones present. Origin 7.0 was used to fit a kinetic model to the data, with
the assumption that the interconversion involves a single rate limiting step, i.e. that the
concentration of each species varied in a mono-exponential fashion over time: %gzn.2;c = pI +
p2xexp(-p3xt) with pI = mole % of Zn-[2]C att =0 s, p2 = mole % Zn-|2]C, p3 = apparent first
order rate constant, ko, in s”' and ¢ the time in s. p/ was fixed at 0 because the experiments started
with pure Zn-TK in D,0 and p2 is close to 100% in most cases, which indicates that after sufficient

time the process is quantitative.
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Figure S1: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-




[2]C. Four samples, each 1.7 mM solutions of Zn-TK in D,0 were heated to four different
temperatures: 50, 60, 70, or 80 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. k5, values are presented in the box at the right. [2]C decomposed at the higher
temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C.
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Figure S2: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-
[2]C. Three samples, each 0.85 mM solutions of Zn-TK in D,0 were heated to three different
temperatures: 50, 60, or 70 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. k,»s values are presented in the box at the right. [2]C decomposed at the higher
temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C.
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Figure S3: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-
[2]C. Three samples, each 3.4 mM solutions of Zn-TK in D,O were heated to three different
temperatures: 50, 60, or 70 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. &, values are presented in the box at the right. [2]C decomposed at the higher




| temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C. |

Monitoring of the H, proton of Zn-[2]C
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Figure S4: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-
[2]C. Four samples, each 1.7 mM solutions of Zn-TK in D,O were heated to four different
temperatures: 50, 60, 70 or 80 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. k,»s values are presented in the box at the right. [2]C decomposed at the higher
temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C.
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Figure S5: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-
[2]C. Three samples, each 0.85 mM solutions of Zn-TK in D,0 were heated to three different
temperatures: 50, 60, or 70 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. k,»s values are presented in the box at the right. [2]C decomposed at the higher
temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C.
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Figure S6: Relative population of Zn-[2]C plotted against reaction time. Intensities of the H;
NMR proton signals of Zn-TK and Zn-[2]C were used to determine percent formation of Zn-
[2]C. Three samples, each 3.4 mM solutions of Zn-TK in D,0O, were heated to three different
temperatures: 50, 60, or 70 °C. Solid lines in the plot represent the best fits for a first order
kinetic process. k,»s values are presented in the box at the right. [2]C decomposed at the higher
temperatures, which prevented the reaction from being monitored for as long as it was at 50 °C.
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Figure S7: Variation of the kq (s!) as a function of Zn-2[C] concentration which shows that the

interconversion is complex and cannot be considered to have a simple rate-limiting step. Solvent:
D,0.




Calculation of the apparent energy of activation of Zn-[2]C formation using an Arrhenius
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Figure S8: Calculation of the apparent activation energy for the formation of Zn-[2]C using three
different initial concentrations of Zn-TK: (a) 0.85 mM, (b) 1.7 mM and (c) 3.4 mM. using H; and
H,, protons of Zn-[2]C.




Calculation of the apparent AH® and AS° using van’t hoff equation
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Figure S8a: Calculation of the apparent AH? and AS° using 1.7 mM initial concentrations of
Zn-TK.



High resolution mass spectrometric kinetic analysis of the transformation of Zn-TK into
Zn-[2]C
HRMS analysis reveals the presence of a pool of intermediates at every stage of the reaction.

704.1272 1111,6840

1h Zn-TK @ 90 °C 499.3495

- T T e e o . i ‘

400 500 600 700 800 900 1000 1100 1200 1300

m/z
703.0959
1112.0697
12h Zn-TK @ 90 °C
[N P e b
400 500 600 700 800 ano 1000 1100 1200 1300
704.1329 m/z
1111.6901

427.2129

e | L. TV | uhmm“mm A m o i mn

400 500 600 700 = 8Q0 900 . 1000 1100 1200 1300

24h Zn-TK @ 90 °C

7044255 m/z
1112.6805
36h Zn-TK @ 90 °C 431.7545
, m L N : W ‘ : - do ‘
400 500 600 _ 700 800 900 . 1000 1100 1200 1300
m/z
703.1229

976.4659
48h Zn-TK @ 90 °C|  #7°0%
@ MJ BTN 1 WO N OO |

400 500 600 700 800 Q00 1000 1100 1200 1300
m/z

704.1311

60h Zn-TK @ 90 ° C
JI.J Lol Ll N Dot bt i n L
400 500

1
600 700. 800 900 1000 1100 1200 1300
m/z

704.1262

70h Zn-TK @ 90 ° C 431-17556 1

400 500 600 700 800 . 900 _ 1000 1100 1200 1300
m/z

" o B PR

Figure S9: High resolution mass spectrograms of a Zn-TK solution heated at 90 °C and sampled
over time. The evolution of the spectra reflects the progress of the transformation of Zn-TK into
Zn-|2]C.
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Figure S10: Expansions of the isotopic distribution patterns of the intermediates (represented in
the upper right of each box) identified by HRMS during the thermal transformation of Zn-TK into
Zn-[2]C.
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Figure S11a: Intermediate species identified by HRMS during the thermal conversion of Zn-TK
into Zn-[2]C. This study revealed the complexity of the mechanism of transformation.
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Figure S11b: (Left) Downfield regions of the 'H NMR spectra measured during the
interconversion of Zn-TK into Zn-[2]C in the absence of bromide. (Right) Downfield regions of
the "H NMR spectra measured during the interconversion of Zn-TK into Zn-[2]C in the presence
of two equivalents of tetrabutylammonium bromide. Solvent: D,0, 7= 323 K.



3. Transformation of Cd-TK into Cd-[2]C
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A 1.7 mM solution of Cd-TK in D,0 was placed in an NMR tube and heated to 90 °C in an oil
bath. The progress of the reaction was monitored by 'H NMR spectroscopy at room temperature
and regular time intervals. After reaction completion, Zn-[2]C was precipitated upon addition of
a mixed solvent of isopropanol and THF (2:1). The precipitate was washed four times with the hot
solvent mixture to remove side-products, including open chain cadmium complexes which were

estimated to amount to less than 10 mol % of the total product mixture. The final precipitate was

dried under vacuum for 4 h and characterized by 'H and '*C NMR spectroscopy and HRMS.

Cd-[2]C: 85 %; '"H NMR (500 MHz, D,0, 25 °C): 6 4.74 (s, 8H, Ar-CH,), 5.04 (s, 8H, Ar-CH,),
6.09 (d, 8H, J= 7.6 Hz, Ar-H), ), 6.49 (d, 8H, J= 7.8 Hz, Ar-H), 7.61 (d, 4H, J= 5.2 Hz, Ar-H),
8.08 (d, 4H, J=5.1 Hz, Ar-H), 8.22 (m, 8H, Ar-H), 8.51 (t, 2H, J="7.7 Hz, Ar-H), 8.89 (s, 4H, Ar-
H); BC NMR (125 MHz, MeOH-d4, 25 °C): § 62.6, 66.4, 114.0, 118.6 (q, *Jc.r = 263 Hz, TFA),
120.6, 124.7, 128.9, 129.3, 129.9, 137.8, 143.2, 148.1, 148.5, 150.4, 156.7, 158.5, 161.2 (q, 3Jc.r
=33 Hz. TFA); MS (ESI-MS): m/z Calcd for (C7oHs4Cd,FgN;(Og)**: 751.104 [M—2TFA]?*, found:

751.105 [M—2TFAJ2*,



The transformation of Cd-TK into Cd-[2]C was monitored in solution by "H NMR spectroscopy

at regular time intervals.
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Figure S12: Stacked '"H NMR spectra of a 1.7mM solution of Cd-TK in D,O acquired at 500
MHz, 298 K and at regular time intervals. The evolution of the spectra reflects the progress of the
transformation of Cd-TK into Cd-[2]C.



The transformation of Cd-TK into Cd-[2]C was also monitored by HRMS in the gas phase at

regular time intervals.
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Figure S13: High resolution mass spectrograms of a Cd-TK solution heated @ 90 °C and sampled
over time. The evolution of the spectrograms reflects the progress of the transformation of Cd-TK
into Cd-[2]C.



4.0. Transformation of Cd-TK into Zn-[2]C

D,0, Zn(OAc), ?’_ =
N Zn n-—N

90 °C

Cd-TK (2.8 mg; 0.023 mM) was added to zinc acetate (10.1 mg, 20 equivalents) in a 1:1 mixture
of 0.6 mL of CD;0D and D,0. The samples were prepared in NMR tubes subjected to 90 °C in
oil bath and the progress of the reactions was monitored by 'H NMR spectroscopy at various time
intervals. After reaction completion, Zn-[2]C was precipitated upon addition of a mixed solvent
of isopropanol and THF (2:1). The precipitate was washed four times with the hot solvent mixture
to remove excess zinc acetate and side-products, including open chain complexes which were
estimated to amount to less than 10 mol % of the total product mixture. The final precipitate was

dried under vacuum for 4 h and characterized by 'H and '*C NMR spectroscopy and HRMS.

Zn-[2]C: Yield: 86 %. '"H NMR (500MHz, D,0, 25 °C): §5.03 (s, 8H, Ar-CH.), 5.43 (s, 8H, Ar-
CH>), 6.60 (ABq, 16H, J = 12 Hz, Ar-H), 7.97 (d, 4H, J = 4.5 Hz, Ar-H), 8.10 (s, 4H, Ar-H), 8.37
(s, br, 4H, Ar-H), 8.64 (d, 4H, J = 8.2 Hz, Ar-H), 8.94 (t, 2H, J = 7.8 Hz, Ar-H), 9.16 (s, 4H, Ar-
H); 3C NMR (75 MHz, MeOD-d,, 25 °C): §63.6, 68.3, 116.6, 117.7 (q, 2Jc.r = 255 Hz, TFA),
122.1, 127.0, 128.0, 129.7, 130.1, 131.0, 135.4, 148.4, 148.8, 148.9, 152.9, 158.4, 161.7 (q, Je.r

=34.5 Hz. TFA); MS (ESI-HRMS): m/z Calcd for (C7oHssFgN1oOsZn2)>: 704.146 [M—2TFAJ>*,



found: 704.147 [M—2TFAJ2*, m/z Caled for (CegHssF3N1906Zn)>: 431.769 [M=3TFAJ?, found:

431.768 [M=3TFAJ*

To track the reaction carefully, the transformation of Cd-TK into Zn-[2]C was monitored using

E
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'"H NMR in solution and HR mass spectrometry at regular time intervals.
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Figure S14: Stacked 'H NMR spectra of a 1.7 mM solution of Cd-TK in D,O with excess
Zn(OAc), acquired at 500 MHz, 25 °C and at regular time intervals. The evolution of the spectra
reflects the progress of the transformation of Cd-TK into Zn-[2]C.
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Figure S15a: High resolution mass spectrograms of a Cd-TK solution heated at 90 °C and

sampled over time. The evolution of the spectrograms reflects the progress of the transformation
of Cd-TK into Zn-|2]C.
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Figure S15b: Expansions of the isotopic distribution patterns of several of the key intermediates
(represented in the upper right of each box) identified by HRMS during the transformation of Cd-
TK into Zn-|2]C.



References

1. T. Prakasam, M. Lusi, M. Elhabiri, C. Platas-Iglesias, J.-C. Olsen, Z. Asfari, S. Cianférani-Sanglier, F.
Debaeneg, L. J. Charbonniere and A. Trabolsi, Angew. Chem. Int. Ed., 2013, 52, 9956-9960.
2. T. Prakasam, R. A. Bilbeisi, M. Lusi, J.-C. Olsen, C. Platas-Iglesias and A. Trabolsi, Chem. Commun.,

2016, 52, 7398-7401.
3. H. E. Gottlieb, V. Kotlyar and A. Nudelman, The J. Org. Chem, 1997, 62, 7512-7515.



