Electronic Supporting Information for

Magnetic properties of $Ln_2\text{CoGe}_4\text{O}_{12}$ and $Ln\text{BCoGe}_4\text{O}_{12}$
($Ln = \text{Gd, Tb, Dy, Ho, Er}; B = \text{Sc, Lu}$)

Diming Xu1, Maxim Avdeev2,3, Peter D. Battle1,* and D. H. Ryan4

1. Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
2. Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
3. School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
4. Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada

* to whom correspondence should be addressed: peter.battle@chem.ox.ac.uk
Figure S1 (a) Observed (red) and calculated (green) neutron diffraction profiles for Tb$_2$CoGe$_4$O$_{12}$ recorded using $\lambda = 2.4397$ Å at 300 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

(b) Observed (red) and calculated (green) neutron diffraction profiles for Tb$_2$CoGe$_4$O$_{12}$ recorded using $\lambda = 1.622$ Å at 1.5 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

(c) Observed (red) and calculated (green) neutron diffraction profiles for TbScCoGe$_4$O$_{12}$ recorded using $\lambda = 1.622$ Å at 1.5 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

Figure S2 Expanded view of the fits to the low-angle regions of the 1.5 K diffraction profiles of (a) Tb$_2$ScCoGe$_4$O$_{12}$ and (b) TbScCoGe$_4$O$_{12}$.
(a) $\text{Tb}_2\text{CoGe}_4\text{O}_{12}$ at 300 K, $\lambda = 2.4397$ Å

(b) $\text{Tb}_2\text{CoGe}_4\text{O}_{12}$ at 1.5 K, $\lambda = 1.622$ Å

(c) $\text{TbScCoGe}_4\text{O}_{12}$ at 1.5 K, $\lambda = 1.622$ Å

Figure S1
Figure S2