Tailoring 2D and 3D Molecular Sieves Structure for Polyolefins Composites: Do All Roads Lead to Remarkable Performances?

H. M. Mouraa, N. L. Gibbonsb, S. A. Millerb and H. O. Pastorea*

a) Micro and Mesoporous Molecular Sieves Group, Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-861, Brazil.
b) The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, United States.
*Corresponding author: gpmmmm@iqm.unicamp.br

Figure SI_01. N_2 adsorption/desorption isotherms of MCM-41 and MCM-48 and their respectively catalysts.

Figure SI_02. XRD of MCM-41 (a), NH$_2$-MCM-41 (b), Oct-Fluorene-NH-MCM-41 (c) and 3@MCM-41 (d).

Figure SI_03. 13C CP/MAS NMR of NH$_2$-MCM-41 (a), Oct-Fluorene-NH-MCM-41 (b) and 3@MCM-41 (c). #residual DIPEA.

Figure SI_04. Melting (A) and crystallization (B) temperatures of PE made by 2@magadiite in the absence (a) and presence (b) of 1-octene and 2@MCM-48 in the absence (c) and presence (d) of 1-octene. C) 13C NMR at 100 °C of PE made by 2@magadiite in the absence (a) and absence (b) of 1-octene.

Figure SI_05. 13C NMR for polymers made by homogeneous 5 (a), 5@Magadiite (b) and 5@n-alkyl-AlPO-kan (c).
Figure SI_01. N$_2$ adsorption/desorption isotherms of MCM-41 and MCM-48 and their respectively catalysts.
Figure SI_02. XRD of MCM-41 (a), NH$_2$-MCM-41 (b), Oct-Fluorene-NH-MCM-41 (c) and 3@MCM-41 (d).
Figure SI_03. 13C CP/MAS NMR of NH$_2$-MCM-41 (a), Oct-Fluorene-NH-MCM-41 (b) and 3@MCM-41 (c). #residual DIPEA. * CH$_2$ and CH$_3$ from the Oct-moiety.
Figure SI_04. Melting (A) and crystallization (B) temperatures of PE made by 2@magadiite in the absence (a) and presence (b) of 1-octene and 2@MCM-48 in the absence (c) and presence (d) of 1-octene. C) 13C NMR at 100 °C of PE made by 2@magadiite in the absence (a) and absence (b) of 1-octene.
Figure SI_05. 13C NMR for polymers made by homogeneous 5 (a), 5@Magadiite (b) and 5@n-alkyl-AlPO-kan (c).