Supporting Information to *Dalton Transactions*

Molten BaCN₂ for the sintering and crystal growth of dielectric oxynitride perovskite Sr₁₋ₓBaₓTaO₂N (x = 0.04–0.23)

Akira Hosono¹*, Yuji Masubuchi²*, Takashi Endo¹, Shinichi Kikkawa²

Affiliations:
¹Graduate School of Chemical Science and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
²Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

*Corresponding authors:
Akira Hosono; address: Graduate School of Chemical Science and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan; Tel/Fax: +81-(0)11-706-6739/6740; E-mail: ezohakitaguni@frontier.hokudai.ac.jp
Associate professor Yuji Masubuchi; address: Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan; Tel: +81-(0)11-706-6742; E-mail: yuji-mas@eng.hokudai.ac.jp
Fig. S1 XRD patterns of (1) α-SrCN$_2$ and (2)BaCN$_2$ powders for (a)as-prepared and (b)the annealed samples. α-SrCN$_2$ and BaCN$_2$ were annealed at approximately 1100 and 900 °C for 5 h. Indexed diffraction peaks shown in (1)(a), (2)(a), and (2)(b) are α-SrCN$_2$ (JCPDS 51-541), tetragonal new phase of BaCN$_2^{26}$, and rhombohedral BaCN$_2$ (JCPDS 51-542), respectively. Inverse triangles, diamonds, circles, arrows, and question marks indicate Sr(OH)$_2$ (ICSD 26029), graphite (ICSD 53781), SrC$_2$ (JCPDS 3-0542), Ba(OH)$_2$ (ICSD 56828), and unknown phases, respectively.